• Title/Summary/Keyword: Robot Control System

Search Result 2,876, Processing Time 0.037 seconds

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

Recognition of the Center Position of Bolt Hole in the Stand of Insulator Using Multilayer Neural Network (다층 뉴럴네트워크를 이용한 애자 스탠드에서의 볼트 구멍의 중심위치 인식)

  • 안경관;표성만
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.304-309
    • /
    • 2003
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system. In order to realize these tasks autonomously, the three dimensional position of target object such as electric line and the stand of insulator must be recognized accurately and rapidly. The approaching of an insulator and the wrenching of a nut task is selected as the typical task of the maintenance of active electric power distribution lines in this paper. Image recognition by multilayer neural network and optimal target position calculation method are newly proposed in order to recognize the center 3 dimensional position of the bolt hole in the stand of insulator. By the proposed image recognition method, it is proved that the center 3 dimensional position of the bolt hole can be recognized rapidly and accurately without regard to the pose of the stand of insulator. Finally the approaching and wrenching task is automatically realized using 6-link electro-hydraulic manipulators.

Robust Visual Odometry System for Illumination Variations Using Adaptive Thresholding (적응적 이진화를 이용하여 빛의 변화에 강인한 영상거리계를 통한 위치 추정)

  • Hwang, Yo-Seop;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.738-744
    • /
    • 2016
  • In this paper, a robust visual odometry system has been proposed and implemented in an environment with dynamic illumination. Visual odometry is based on stereo images to estimate the distance to an object. It is very difficult to realize a highly accurate and stable estimation because image quality is highly dependent on the illumination, which is a major disadvantage of visual odometry. Therefore, in order to solve the problem of low performance during the feature detection phase that is caused by illumination variations, it is suggested to determine an optimal threshold value in the image binarization and to use an adaptive threshold value for feature detection. A feature point direction and a magnitude of the motion vector that is not uniform are utilized as the features. The performance of feature detection has been improved by the RANSAC algorithm. As a result, the position of a mobile robot has been estimated using the feature points. The experimental results demonstrated that the proposed approach has superior performance against illumination variations.

A Study on the Determination of 3-D Object's Position Based on Computer Vision Method (컴퓨터 비젼 방법을 이용한 3차원 물체 위치 결정에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.26-34
    • /
    • 1999
  • This study shows an alternative method for the determination of object's position, based on a computer vision method. This approach develops the vision system model to define the reciprocal relationship between the 3-D real space and 2-D image plane. The developed model involves the bilinear six-view parameters, which is estimated using the relationship between the camera space location and real coordinates of known position. Based on estimated parameters in independent cameras, the position of unknown object is accomplished using a sequential estimation scheme that permits data of unknown points in each of the 2-D image plane of cameras. This vision control methods the robust and reliable, which overcomes the difficulties of the conventional research such as precise calibration of the vision sensor, exact kinematic modeling of the robot, and correct knowledge of the relative positions and orientation of the robot and CCD camera. Finally, the developed vision control method is tested experimentally by performing determination of object position in the space using computer vision system. These results show the presented method is precise and compatible.

  • PDF

The Analysis of Face Recognition Rate according to Distance and Interpolation using PCA in Surveillance System (감시카메라 시스템에서 PCA에 의한 보간법과 거리별 얼굴인식률 분석)

  • Moon, Hae-Min;Kwak, Keun-Chang;Pan, Sung-Bum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.153-160
    • /
    • 2011
  • Recently, the use of security surveillance system including CCTV is increasing due to the increase of terrors and crimes. At the same time, interest of face recognition at a distance using surveillance cameras has been increasing. Accordingly, we analyzed the performance of face recognition according to distance using PCA-based face recognition and interpolation. In this paper, we used Nearest, Bilinear, Bicubic, Lanczos3 interpolations to interpolate face image. As a result, we confirmed that existing interpolation have an few effect on performance of PCA-based face recognition and performance of PCA-based face recognition is improved by including face image according to distance in traning data.

Development of an automatic trajectory planning system(ATPS) for painting robots (페인팅로보트의 자동궤적계획시스템 개발에 관한 연구)

  • 서석환;우인기;노성기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.394-399
    • /
    • 1990
  • We develop an automatic trajectory planning system (ATPS) for painting robots by proposing a new trajectory planning scheme. The new scheme considers geometric modeling, painting mechanics, and robot dynamics to output an optimal trajectory (in the sense of coating thickness and painting time) based on the CAD data describing the shape of objects, The new scheme is implemented in SUN/4 workstation to develop an ATPS for painting robots. To test the validity of the new scheme and to illustrate the developed system, numerous runs are performed and analyzed.

  • PDF

Evolution of multiple agent system from basic action to intelligent behavior

  • Sugisaka, Masanori;Wang, Xiapshu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.190-194
    • /
    • 1998
  • In this paper, we introduce the micro robot soccer playing system as a standard test bench for the study on the multiple agent system. Our method is based on following viewpoints. They are (1) any complex behavior such as cooperation among agents must be completed by sequential basic actions of concerned agents. (2) those basic actions can be well defined, but (3) how to organize those actions in current time point so as to result in a new stale beneficial to the end aim ought to be achieved by a kind of self-learning self-organization strategy.

  • PDF

Design and Control of X-ray Permeable Teleoperated Stewart Platform for Fracture Surgery (골절 수술용 엑스레이 투과 원격조종 스튜어트 플랫폼의 설계 및 제어)

  • Yoo, Byeongjun;Kim, Hyemi;Lee, Sung-Hak;Lim, Sunho;Park, Tae Gon;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.660-666
    • /
    • 2015
  • To avoid radiation exposure from repeated x-rays taken during orthopedic surgery, an x-ray permeable teleoperated Stewart platform for orthopedic fracture surgery was developed. This system is composed of a user interface device and a teleoperated operational robot, both of which use a Stewart platform mechanism. The links of the operational robot are made from an x-ray permeable material, polycarbonate, to minimize the interference. The forward and inverse kinematics algorithm applied and the structural reliability were both verified through an analysis using commercial engineering software. To monitor the operating status in real time and stop the device during an emergency, a monitoring software was developed. The performance of the x-ray permeable teleoperated Steward platform was validated experimentally.

Study of Intelligent Vision Sensor for the Robotic Laser Welding

  • Kim, Chang-Hyun;Choi, Tae-Yong;Lee, Ju-Jang;Suh, Jeong;Park, Kyoung-Taik;Kang, Hee-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.447-457
    • /
    • 2019
  • The intelligent sensory system is required to ensure the accurate welding performance. This paper describes the development of an intelligent vision sensor for the robotic laser welding. The sensor system includes a PC based vision camera and a stripe-type laser diode. A set of robust image processing algorithms are implemented. The laser-stripe sensor can measure the profile of the welding object and obtain the seam line. Moreover, the working distance of the sensor can be changed and other configuration is adjusted accordingly. The robot, the seam tracking system, and CW Nd:YAG laser are used for the laser welding robot system. The simple and efficient control scheme of the whole system is also presented. The profile measurement and the seam tracking experiments were carried out to validate the operation of the system.

A Study on Motion Planning Generation of Jumping Robot Control Using Model Transformation Method (모델 변환법을 이용한 점핑 로봇 제어의 운동경로 생성에 관한 연구)

  • 서진호;산북창의;이권순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.120-131
    • /
    • 2004
  • In this paper, we propose the method of a motion planning generation in which the movement of the 3-link leg subsystem is constrained to a slider-link and a singular posture can be easily avoided. The proposed method is the jumping control moving in vertical direction which mimics a cat's behavior. That is, it is jumping toward wall and kicking it to get a higher-place. Considering the movement from the point of constraint mechanical system, the robotic system which realizes the motion changes its configuration according to the position and it has several phases such as; ⅰ) an one-leg phase, ⅱ) in an air-phase. In other words, the system is under nonholonomic constraint due to the reservation of its momentum. Especially, in an air-phase, we will use a control method using state transformation and linearization in order to control the landing posture. Also, an iterative learning control algorithm is applied in order to improve the robustness of the control. The simulation results for jumping control will illustrate the effectiveness of the proposed control method.