• Title/Summary/Keyword: Robot Control System

Search Result 2,876, Processing Time 0.034 seconds

Development of Robust Adaptive Learning Control for Nonlinear System (비선형 시스템에 대한 강인성 적응 학습 제어기의 개발)

  • Yu, Yeong-Sun;Ha, Hwan-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1895-1902
    • /
    • 2001
  • This paper gives an overview of the relationships between methods of loaming and adaptive control. It is the objective of this paper to develop adaptive learning control algorithms that combine the advantages of adaptive control with those of leaning control to the extent possible for the type of system model used. The robustness of this adaptive loaming control with respect to reinitialization errors and fluctuation of dynamics from disturbance is analyzed extensively. Simulation results have shown to verify the effectiveness of the proposed control algorithm.

Robust Control of Trajectory Tracking for Hydraulic Excavator (유압 굴삭기의 궤적 추종을 위한 강인 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

Integration and Control Technology of GaAs Bonding System using DeviceNet (DeviceNet 을 채용한 GaAs 본딩 시스템의 통합 제어기술)

  • 송준엽;이승우;임선종;김원경;배영걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1376-1379
    • /
    • 2004
  • This study is designed integration and control system of GaAs bonding system consisted of multi-processing using DeviceNet and GEM-Protocol. Developing bonding system is composed of resin coating, pre-baking pre-aligner, bonding, material handler(flip robot), and wafer cassette, etc. This system has process-fluent of each a process and share information using GEM-protocol. This study devised virtual bonding simulator to control and to monitor bonding system efficiently. Also we can verify optimizing of system previously through a virtual bonding simulator.

  • PDF

Implementation of Sinusoidal Rotatory Chair System with Fuzzy Rule Base (Fuzzy Rule Base에 의한 Sinusoidal Rotatory Chair System의 구현)

  • Cha, In-Su;Park, Hae-Am;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.582-584
    • /
    • 1994
  • A sinusoidal rotatory chair system using a self-tuning and following control by a fuzzy was designed to evaluate the vestibular function and to apply to a robot driving power system. The experimental results by the sinusoidal rotatory chair system were pretty good and whitch had smaller then ${\pm}210$ pulse error on the ${\pm}810^{\circ}$ sinusoidal rotation at 0.12 Hz by using a 850W DC servo motor. As a results, the sinusoidal rotatory chair system may be useful to evaluate the vestibular function in the field of medicine, and it can be used to robotics or a numerical control system (NC) on the industry if the the obtained control method and the system are adapted for a channel.

  • PDF

Korean Continuous Speech Recognition Using Discrete Duration Control Continuous HMM (이산 지속시간제어 연속분포 HMM을 이용한 연속 음성 인식)

  • Lee, Jong-Jin;Kim, Soo-Hoon;Hur, Kang-In
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • In this paper, we report the continuous speech recognition system using the continuous HMM with discrete duration control and the regression coefficients. Also, we do recognition experiment using One Pass DP method(for 25 sentences of robot control commands) with finite state automata context control. In the experiment for 4 connected spoken digits, the recognition rates are $93.8\%$ when the discrete duration control and the regression coefficients are included, and $80.7\%$ when they are not included. In the experiment for 25 sentences of the robot control commands, the recognition rate are $90.9\%$ when FSN is not included and $98.4\%$ when FSN is included.

  • PDF

An Adaptive Controller Design for Inderstrial Robotic Maniqulator Using TMS320C5X Chip (TMS320C5X 칩을 사용한 산업용 로보트 매니퓰레이터의 적응제어기 설계)

  • Bae, G. H.;Wang, H. H.;Han, S. H.;Lee, M. C.;Son, G.;Lee, J. M.;Lee, M. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.478-482
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C50) for robotic manipulators to achieve trajectorytracking angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adapation laws are derived from the improved second stability analysis based on the indirect adaptive control theory.l The proposed control scheme is simple in structure, fast in computation, an suitable for implementation of real-time control. Moreover, this scheme does not requre an accurate dynamic modeling, nor values of manipulator paramenters and payload Performance of the adaptive controller is illustrated by exeperimental results for a SCARA robot.

  • PDF

Center of Mass Compliance Control of Humanoid Using Disturbance Observer (외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어)

  • Park, Gyeongjae;Kim, Myeong-Ju;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.

Kalman Filter-based Sensor Fusion for Posture Stabilization of a Mobile Robot (모바일 로봇 자세 안정화를 위한 칼만 필터 기반 센서 퓨전)

  • Jang, Taeho;Kim, Youngshik;Kyoung, Minyoung;Yi, Hyunbean;Hwan, Yoondong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.703-710
    • /
    • 2016
  • In robotics research, accurate estimation of current robot position is important to achieve motion control of a robot. In this research, we focus on a sensor fusion method to provide improved position estimation for a wheeled mobile robot, considering two different sensor measurements. In this case, we fuse camera-based vision and encode-based odometry data using Kalman filter techniques to improve the position estimation of the robot. An external camera-based vision system provides global position coordinates (x, y) for the mobile robot in an indoor environment. An internal encoder-based odometry provides linear and angular velocities of the robot. We then use the position data estimated by the Kalman filter as inputs to the motion controller, which significantly improves performance of the motion controller. Finally, we experimentally verify the performance of the proposed sensor fused position estimation and motion controller using an actual mobile robot system. In our experiments, we also compare the Kalman filter-based sensor fused estimation with two different single sensor-based estimations (vision-based and odometry-based).

Analysis of Error Propagation in Two-way-ranging-based Cooperative Positioning System (TWR 기반 군집 협업측위 시스템의 오차 전파 분석)

  • Lim, Jeong-Min;Lee, Chang-Eun;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.898-902
    • /
    • 2015
  • Alternative radio-navigation technologies aim at providing continuous navigation solution even if one cannot use GNSS (Global Navigation Satellite System). In shadowing region such as indoor environment, GNSS signal is no longer available and the alternative navigation system should be used together with GNSS to provide seamless positioning. For soldiers in battlefield where GNSS signal is jammed or in street battle, the alternative navigation system should work without positioning infrastructure. Moreover, the radio-navigation system should have scalability as well as high accuracy performance. This paper presents a TWR (Two-Way-Ranging)-based cooperative positioning system (CPS) that does not require location infrastructure. It is assumed that some members of CPS can obtain GNSS-based position and they are called mobile anchors. Other members unable to receive GNSS signal compute their position using TWR measurements with mobile anchors and neighboring members. Error propagation in CPS is analytically studied in this paper. Error budget for TWR measurements is modeled first. Next, location error propagation in CPS is derived in terms of range errors. To represent the location error propagation in the CPS, Location Error Propagation Indicator (LEPI) is proposed in this paper. Simulation results show that location error of tags in CPS is mainly influenced by the number of hops from anchors to the tag to be positioned as well as the network geometry of CPS.

Development of compact platform for low altitude remote sensing

  • Yamanaka, Daisuke;Namie, Taisuke;Tanaka, Motohiro;Kumano, Shinichi;Ishimatsu, Takakazu;Ueda, Mitsuaki;Moromugi, Shunji;Onodera, K.;Onodera, Kazuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1863-1866
    • /
    • 2005
  • In this paper we propose a platform that is applicable to low altitude remote sensing. Basic idea of the platform is based on the model helicopter. On big difference from the conventional model helicopter is that our platform has four main rotors. Furthermore, vision control strategy is introduced so that operator can use the platform without any specialized intensive knowledge

  • PDF