• 제목/요약/키워드: Robot Control System

검색결과 2,885건 처리시간 0.036초

소형 2족 보행 로봇의 지능형 동작의 구현 (Implementation of an Intelligent Action of a Small Biped Robot)

  • 임선호;조정산;이수영;안희욱;성영휘
    • 제어로봇시스템학회논문지
    • /
    • 제10권9호
    • /
    • pp.825-832
    • /
    • 2004
  • A small biped robot system is designed and implemented. The robot system consists of a mechanical robot body, a control system, a sensor system, and a user interface system. The robot has 12 dofs for two legs, 6 dofs for two arms, 2 dofs for a neck, so it has total 20 dofs to have dexterous motion capability. The implemented robot has the capability of performing intelligent actions such as playing soccer, resisting external forces, and walking on a slope terrain. In this paper, we focus on the robot's capability of playing soccer. The robot uses a color CCD camera attached on its head as a sensor for playing soccer. To make the robot play soccer with only one camera, an algorithm, which consists of searching, localization, and motion planning, is proposed and experimented. The results show that the robot can play soccer successfully in the given environments.

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

인터넷을 통한 로봇의 원격 제어 (Remote Control of a Robot Through the Internet)

  • 이동주;양태규
    • 정보학연구
    • /
    • 제4권1호
    • /
    • pp.9-22
    • /
    • 2001
  • 본 논문에서는 웹브라우저를 이용하여 로봇을 원격 제어한다. 4대의 독립된 PC를 사용하여 자각의 기능을 분리하고 상호 연동하는 구조로 PC를 연결하였다. 조작자가 시간과 장소에 제약받지 않고 웹브라우저를 이용하여 제어값을 입력하면 제어값은 웹 서버를 거쳐 데이터베이스에 저장된다. 로봇과 연결된 PC는 데이터베이스에서 1ms 간격으로 제어값을 입력받아 제어값의 변화가 있을 경우만 제어값의 변화량으로 로봇이 동작한다. 스텝모터를 이용하여 간단한 로봇을 제작하고 이를 웹 브라우저를 이용하여 실제 동작시킨다. 조작자가 원하는 제어값이 최종 수신단의 로봇에 제대로 전달되어 동작하는지 확인하고 웹브라우저를 이용한 로봇제어의 가능성을 확인하였다

  • PDF

A research on man-robot cooperative interaction system

  • Ishii, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.555-557
    • /
    • 1992
  • Recently, realization of an intelligent cooperative interaction system between a man and robot systems is required. In this paper, HyperCard with a voice control is used for above system because of its easy handling and excellent human interfaces. Clicking buttons in the HyperCard by a mouse device or a voice command means controlling each joint of a robot system. Robot teaching operation of grasping a bin and pouring liquid in it into a cup is carried out. This robot teaching method using HyperCard provides a foundation for realizing a user friendly cooperative interaction system.

  • PDF

실시간 운영체제 기반의 복강경 수술 로봇의 모터제어 시스템에 관한 연구 (A Study of a RealTime OS Based Motor Control System for Laparoscopic Surgery Robot)

  • 송승준;김용;최재순;배진용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.218-221
    • /
    • 2006
  • This paper reports on a Realtime OS based motor control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. The system has a conventional master-slave robot configuration and the control system consists of joint controllers, host controllers, and power units. The robot features (1) a compact slave robot with 5 DOF (Degree Of Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously, and (2) direct 1:1 correspondence in the joint of master and slave robot that simplifies control algorithm and enhances reliability. Each master, slave and GUI (Graphical User Interface) host has a dedicated RTOS (RealTime OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) Each master and slave controller set pair has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication. Total 4 pairs of the master/slave manipulators as current are monitored by one host controller for operation monitoring and higher level motion control. The system showed acceptable performance in both position control precision and master-slave motion synchronization and is now under further development for better safety and control fidelity for clinically applicable prototype.

  • PDF

DSP를 이용한 로보트 제어시스템 개발 (Development of robot control system using DSP)

  • 이보희;김진걸
    • 제어로봇시스템학회논문지
    • /
    • 제1권1호
    • /
    • pp.50-57
    • /
    • 1995
  • In this paper, the design and the implementation of the controller for an articulate robot, which is developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies structures by the time-division control with TMS320C31 DSP chip. The method of control is based on the fuzzy-compensated PID control with scale factor, which compensates for the influence of load variation resulting from the various postures of the robot with conventional PID scheme. The application of the proposed controller to the robot system with DC servo-motors shows some excellent control capabilities. Also, the response characteristics of system for the various trajectory commands verify the superiority of the controller.

  • PDF

적응제어 및 시스템 규명을 이용한 Field Robot의 궤적 제어 (Trajectory Control of Field Robot Using Adaptive Control and System Identification)

  • 김승수;서우석;양순용;이병룡;안경관
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.728-735
    • /
    • 2002
  • The Field robot means the machinery applied for outdoor tasks in construction, agriculture and undersea etc. In this study, to field-robotize a hydraulic excavator that is mostly used in construction working, we have developed an automatic excavation system and an adaptive control system. A model-reference adaptive controller has been designed based on the model that is obtained through off-line system identification. It is illustrated by computer simulations that the proposed control system gives good performance in the trajectory tracking control and the adaptation to parameter variation.

Attitude control of space robots with a manipulator using time-state control form

  • Sampei, Mitsuji;Kiyota, Hiromitsu;Ishikawa, Masato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.468-471
    • /
    • 1995
  • In this paper, we propose a new strategy for a space robot to control its attitude. A space robot is an example of a class of non-holonomic systems, a system of which cannot be stabilized into its equilibria with continuous static state feedbacks even in the case that the system is, in some sense, controllable. Thus, we cannot design stabilizing controllers for space robots using conventional control theories. The strategy presented here transforms the non-holonomic system into a time-state control form, and allows us to make the state of the original system any desired one. In the stabilization, any conventional control theory can be applied. For simplicity, a space robot with a two-link manipulator is considered, and a simulated motion of the controlled system is shown.

  • PDF

퍼지논리를 이용한 로봇 매니퓰레이터의 다변수제어 (Multivariable control of robot manipulators using fuzzy logic)

  • 이현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.490-493
    • /
    • 1996
  • This paper presents a control scheme for the motion of a 2 DOF robot manipulator. Robot manipulators are multivariable nonlinear systems. Fuzzy logic is avaliable human-like control without complex mathematical operation and is suitable to nonlinear system control. In this paper, Implementation of fuzzy logic control of robotic manipulators shows. Algorithm has been performed with simulation packages MATRIXx and SystemBuild.

  • PDF

Novel Ubiquitous Concept of Real Reality Robot Game Controlled by Mobile Server Robot

  • Joo, Byoung-Kyu;Jeon, Poong-Woo;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2481-2485
    • /
    • 2003
  • In this paper novel concept of real reality robot game controlled by a mobile server robot is proposed. Real reality robot game means that two real robots controlled by two human operator through the internet are playing a boxing game. The mobile server robot captures playing images of the boxing game and send them to GUI on the screen of human operators’ PC. The human operator can login to boxing game from any computer in any place if he/she is permitted. Remote control of boxing robot by a motion capture system through network is implemented. Successful motion control of a boxing robot remotely controlled by a motion capture system through network can be achieved.

  • PDF