• Title/Summary/Keyword: Robot Classification

Search Result 172, Processing Time 0.032 seconds

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

Classification of Wearable Walking-Assistive Robots for Task-Oriented Design (작업지향 설계를 위한 의복형 보행보조 로봇의 분류방법)

  • Kim, Heon-Hui;Jung, Jin-Woo;Jang, Hyo-Young;Kim, Jin-Oh;Bien, Zeung-Nam
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, we propose a methodology for classifying types of lower limb disability and their mechanical structure, based on extensive survey of previous developments. We also propose a task-oriented design with human-friendly and energy-efficient assistive system. The result can be used for optimal design of wearable walking-assistive robot considering the type of disability and the content of task.

  • PDF

Classification of Obstacle Shape for Generating Walking Path of Humanoid Robot (인간형 로봇의 이동경로 생성을 위한 장애물 모양의 구분 방법)

  • Park, Chan-Soo;Kim, Doik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

Robust Color Classifier for Robot Soccer System under Illumination Variations (조명 변화에 강인한 로봇 축구 시스템의 색상 분류기)

  • 이성훈;박진현;전향식;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • The color-based vision systems have been used to recognize our team robots, the opponent team robots and a ball in the robot soccer system. The color-based vision systems have the difficulty in that they are very sensitive to color variations brought by brightness changes. In this paper, a neural network trained with data obtained from various illumination conditions is used to classify colors in the modified YUV color space for the robot soccer vision system. For this, a new method to measure brightness is proposed by use of a color card. After the neural network is constructed, a look-up-table is generated to replace the neural network in order to reduce the computation time. Experimental results show that the proposed color classification method is robust under illumination variations.

Hand gesture based a pet robot control (손 제스처 기반의 애완용 로봇 제어)

  • Park, Se-Hyun;Kim, Tae-Ui;Kwon, Kyung-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.145-154
    • /
    • 2008
  • In this paper, we propose the pet robot control system using hand gesture recognition in image sequences acquired from a camera affixed to the pet robot. The proposed system consists of 4 steps; hand detection, feature extraction, gesture recognition and robot control. The hand region is first detected from the input images using the skin color model in HSI color space and connected component analysis. Next, the hand shape and motion features from the image sequences are extracted. Then we consider the hand shape for classification of meaning gestures. Thereafter the hand gesture is recognized by using HMMs (hidden markov models) which have the input as the quantized symbol sequence by the hand motion. Finally the pet robot is controlled by a order corresponding to the recognized hand gesture. We defined four commands of sit down, stand up, lie flat and shake hands for control of pet robot. And we show that user is able to control of pet robot through proposed system in the experiment.

  • PDF

Knitted Data Glove System for Finger Motion Classification (손가락 동작 분류를 위한 니트 데이터 글러브 시스템)

  • Lee, Seulah;Choi, Yuna;Cha, Gwangyeol;Sung, Minchang;Bae, Jihyun;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.240-247
    • /
    • 2020
  • This paper presents a novel knitted data glove system for pattern classification of hand posture. Several experiments were conducted to confirm the performance of the knitted data glove. To find better sensor materials, the knitted data glove was fabricated with stainless-steel yarn and silver-plated yarn as representative conductive yarns, respectively. The result showed that the signal of the knitted data glove made of silver-plated yarn was more stable than that of stainless-steel yarn according as the measurement distance becomes longer. Also, the pattern classification was conducted for the performance verification of the data glove knitted using the silver-plated yarn. The average classification reached at 100% except for the pointing finger posture, and the overall classification accuracy of the knitted data glove was 98.3%. With these results, we expect that the knitted data glove is applied to various robot fields including the human-machine interface.

Efficient Mobile Robot Localization through Position Tracking Bias Mitigation for the High Accurate Geo-location System (고정밀 위치인식 시스템에서의 위치 추적편이 완화를 통한 이동 로봇의 효율적 위치 추정)

  • Kim, Gon-Woo;Lee, Sang-Moo;Yim, Chung-Hieog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.752-759
    • /
    • 2008
  • In this paper, we propose a high accurate geo-location system based on a single base station, where its location is obtained by Time-of-Arrival(ToA) and Direction-of-Arrival(DoA) of the radio signal. For estimating accurate ToA and DoA information, a MUltiple SIgnal Classification(MUSIC) is adopted. However, the estimation of ToA and DoA using MUSIC algorithm is a time-consuming process. The position tracking bias is occurred by the time delay caused by the estimation process. In order to mitigate the bias error, we propose the estimation method of the position tracking bias and compensate the location error produced by the time delay using the position tracking bias mitigation. For accurate self-localization of mobile robot, the Unscented Kalman Filter(UKF) with position tracking bias is applied. The simulation results show the efficiency and accuracy of the proposed geo-location system and the enhanced performance when the Unscented Kalman Filter is adopted for mobile robot application.

The Effects of the Lab Practices Using Robot on Science Process Skills in the Elementary (초등학교에서 로봇활용실험이 과학탐구능력에 미치는 효과)

  • Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.4
    • /
    • pp.625-634
    • /
    • 2011
  • This research examines educational effects on students' scientific process skills after applying a robot utilized MBL learning. Surveys and interviews concerning robot based science lessons were also conducted. The students were divided into experiment group who used the robots and controlled group who used traditional learning method with textbook and experiments. The result showed some significant differences in scientific measurement, prediction and inference(<.05). In contrast, no significant differences were found in observation and classification. The students answered the survey that the robots helped them understand science better and made science lessons more interesting.

  • PDF

Development of Special Documents Classification System using Deep Learning (딥러닝을 이용한 전문분야 문서 분류 시스템 개발)

  • Jin, Sang-Hyeon;Hwang, Sang-Ho;Kang, Won-Seok;Son, Chang-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.589-591
    • /
    • 2019
  • 본 논문에서는 고도장비의 운용 및 정비를 위한 교육훈련 시스템 개발을 위해 자연어 처리와 딥러닝 기술을 이용하여 항공정비와 관련된 전문분야의 문서 분류가 가능한 방법을 제안하고자 한다. 문서 분류 모델의 개발을 위해 항공정비 교범을 텍스트 파일로 변환하여 총 4917개의 문서를 생성하였으며, 정비사 개인별 정비능력 관리(IMQC)를 기준으로 12개의 범주로 구분하였다. 수집된 문서는 전문분야의 문서인 점을 고려하여 전문용어 사전을 추가하였으며, KoNLPy를 이용하여 전처리를 수행하였다. 전문분야의 문서는 범주에 상관없이 문서 내용의 유사도가 매우 높은 특징을 가지고 있어, 특정 범주내에서 중요한 정도를 잘 표현 할 수 있는 TF-ICF를 이용하여 특징 추출을 하였다. 이후 합성곱 신경망(CNN)을 이용하여 특징 맵을 생성한 후 완전 결합 계층을 통하여 분류하였으며, 테스트 문서 983건을 분류한 결과 평균 73.6%의 분류성능을 보여주었다.