DOI QR코드

DOI QR Code

Classification of Obstacle Shape for Generating Walking Path of Humanoid Robot

인간형 로봇의 이동경로 생성을 위한 장애물 모양의 구분 방법

  • Park, Chan-Soo (Interaction and Robotics Research Center, Korea Institute of Science and Technology) ;
  • Kim, Doik (Interaction and Robotics Research Center, Korea Institute of Science and Technology)
  • 박찬수 (한국과학기술연구원 실감교류로보틱스센터) ;
  • 김도익 (한국과학기술연구원 실감교류로보틱스센터)
  • Received : 2012.06.14
  • Accepted : 2012.09.25
  • Published : 2013.02.04

Abstract

To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.

알려지지 않은 실내에서 인간형 로봇의 이동경로 생성을 위해서는 주변 장애물의 형태를 정확히 인식하여 이에 적합한 로봇 움직임을 만들어야 한다. 이 때, 인식된 장애물의 형태에 따라 로봇이 접촉없이 통과할 수 있고, 발과 접촉하여 통과할 수도 있으며, 회피할 수도 있다. 이를 위해 장애물이 어떤 형태를 갖고 있는지를 분류하여 로봇의 이동경로를 생성할 때 활용 가능한 장애물 인식 및 분류 방법을 제안한다. 특히 장애물 형태를 정확히 인식하기 위한 기존 알고리즘은 많은 계산량으로 실시간 활용에 어려움이 있으며, 불필요한 장애물도 함께 추출하기 때문에 연산자원의 낭비가 불가피하다. 본 연구에서는 장애물 인식의 계산량을 줄이기 위해 장애물의 영역을 분류한 후 정확한 형상이 필요한 장애물에 한해 크기 및 형태를 추출하도록 알고리즘의 적용 범위를 제한하여 계산량을 줄이는 방법을 제안한다.

Keywords

References

  1. Fu, C. and Chen, K., 2008, "Gait Synthesis and Sensory Control of Stair Climbing for a Humanoid Robot," IEEE Transactions on Industrial Electronics, Vol. 55, No. 5, pp. 2111-2120.
  2. Tajima, R., Honda, D. and Suga K., 2009, "Fast Running Experiments Involving a Humanoid Robot," IEEE International Conference on Robotics and Automation, pp. 1571-1576.
  3. Kim, J.Y., Park, I.W. and Oh, J.H., 2007, "Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor," Journal of Intelligent and Robotic Systems, vol. 48, no. 4, pp 457-484. https://doi.org/10.1007/s10846-006-9107-8
  4. Park, C.-S., Ha, T., Kim, J. and Choi, C.-H., 2010, "Trajectory Generation and Control for a Biped Robot Walking Upstairs," International Journal of Control, Automation and Systems, Vol. 8, No. 2, pp. 339-351. https://doi.org/10.1007/s12555-010-0220-x
  5. Okada, K., Ogura, T., Haneda, A. and Inaba, M., 2005, "Autonomous 3d Walking System for a Humanoid Robot Based on Visual Step Recognition and 3D Foot Step Planner," Proceedings of the IEEE International Conference on Robotics and Automation, pp. 623-628.
  6. Gutmann, J., Fukuchi, M. and Fujita, M., 2008, "3d Perception and Environment Map Generation for Humanoid Robot Navigation," The International Journal of Robotics Research, Vol. 27, No. 10, pp. 1117-1134. https://doi.org/10.1177/0278364908096316
  7. Heracles, M., Bolder, B. and Goerick, C., 2009, "Fast Detection of Arbitrary Planar Surfaces from Unreliable 3D Data," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5717-5724.
  8. Choi, J.-M., Lee, S.-J. and Won, M., 2011, "Self- Learning Navigation Algorithm for Vision-Based Mobile Robots Using Machine Learning Algorithms", Journal of Mechanical Science and Technology, Vol. 25, No. 1, pp. 247-254. https://doi.org/10.1007/s12206-010-1023-y
  9. Park, C.-S., Seo, E.-H., Kim, D. and You, B.-J., 2011, "Stair Boundary Extraction Using the 2D Laser Scanner," IEEE International Conference on Mechatronics and Automation, pp. 1538-1543.
  10. Johnson, S. C., 1967, "Hierarchical Clustering Schemes," Psychometrika, Vol. 32, No. 3, pp. 241-254. https://doi.org/10.1007/BF02289588