• Title/Summary/Keyword: Robot Automation System

Search Result 388, Processing Time 0.037 seconds

The Current State and Future Directions of Industrial Robotic Arms in Modular Construction

  • Song, Seung Ho;Choi, Jin Ouk;Lee, Seungtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.336-343
    • /
    • 2022
  • Industrial robotic arms are widely adopted in numerous industries for manufacturing automation under factory settings, which eliminates the limitations of manual labor and provides significant productivity and quality benefits. The U.S. modular construction industry, despite having similar controlled factory environments, still heavily relies on manual labor. Thus, this study investigates the U.S., Canada, and Europe-based leading modular construction companies and research labs implementing industrial robotic arms for manufacturing automation. The investigation mainly considered the current research scope, industry state, and constraints, as well as identifying the types and specifications of the robotic arms in use. First, the study investigated well-recognized modular building associations, the Modular Building Institute (MBI), and renowned architecture design magazine, Dezeen to gather industry updates. The authors discovered one university lab and a few companies that adopted Switzerland-based robotic arms, ABB. Researching ABB robotics led to the discovery of ABB's competitor, Germany-based KUKA robotic arms. Consequently, research extended to the companies and labs adopting KUKA models. In total, this study has identified seven modular companies and four research labs. All companies employed robotic arms and gantry robot combinations in a production-line-like system for partial automation, and some adopted design standardization for optimization. The common goal among the labs was to achieve greater flexibility and full automation with robotic arms. This study will help companies better implement robotic arm automation by providing recommendations from investigating its current industry status.

  • PDF

Real-time communication in an off-line programming (오프라인 프로그래밍에서의 실시간 통신)

  • Song, Jong-Tak;Son, Kwon;Lee, Min-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.40-43
    • /
    • 1996
  • An off-line programming, OLP, system is widely used in automation fines. To help an on-line robot system to carry out desirable tasks planned by the off-line simulation, an approach to the real-time communication is presented. The OLP system developed consists of a software, a host computer(PC), a SCARA robot body, four servo drivers, and four independent joint controllers. This study focuses on the software where real-time communication is included. The software, can be used in teaching, trajectory planning, real-time running, and performance evaluation. The evaluation of different control algorithms is one of the merits of the software. The software can give servo commands for task running. A comparison of generated and corresponding actual trajectories provides the evaluation of task performance. The safety, of the OLP system is ensured by alarming malfuntions of the system. The OLP system developed can reduce the teaching time and increase the user's convenience.

  • PDF

A Study on Design and Durability Analysis of Vertical Multi-Jointed Robot with Translational Joint to adapt in the High Temperature Environment (고온 환경에서 적용 가능한 병진관절을 갖는 수직 다관절 로봇시스템 개발 및 내구성 분석에 관한 연구)

  • Kim, Du-Beum;Kim, Hui-Jin;Bae, Ho-Young;Kim, Sang-Hyun;Im, O-Duek;Han, Sung-Hyun;Kang, Jung-Seok;Noh, Sung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2019
  • We Proposed a new technology to develop vertical type multi-joint robot system enable to adapt in high temperature environment. The main contents is a new approach to design a vertical type articulated robot with prismatic joint and analysis of thermal for process automation of casting and forging. The proposed robot is suitable to use handling working parts of casting and forging. for the manufacturing process of forging and casting. The reliability is illustrated that the proposed technique is more stable and robust than the conventional system. This study is concerned with an analytical methodology of kinematic computation for 7 DOF manipulators for optimization of forging manufacturing process.

ICT Agriculture Support System for Chili Pepper Harvesting

  • Byun, Younghwan;Oh, Sechang;Choi, Min
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.629-638
    • /
    • 2020
  • In this paper, an unmanned automation system for harvesting chili peppers through image recognition in the color space is proposed. We developed a cutting-edge technology in terms of convergence between information and communication technology (ICT) and agriculture. Agriculture requires a lot of manpower and entails hard work by the laborers. In this study, we developed an autonomous application that can obtain the head coordinates of a chili pepper using image recognition based on the OpenCV library. As an alternative solution to labor shortages in rural areas, a robot-based chili pepper harvester is proposed as a convergence technology between ICT and agriculture requiring hard labor. Although agriculture is currently a very important industry for human workers, in the future, we expect robots to have the capability of harvesting chili peppers autonomously.

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Robust Real-time Control of Autonomous Mobile Robot Based on Ultrasonic and Infrared sensors (초음파 및 적외선 센서 기반 자율 이동 로봇의 견실한 실시간 제어)

  • Nguyen, Van-Quyet;Han, Sung-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.145-155
    • /
    • 2010
  • This paper presents a new approach to obstacle avoidance for mobile robot in unknown or partially unknown environments. The method combines two navigation subsystems: low level and high level. The low level subsystem takes part in the control of linear, angular velocities using a multivariable PI controller, and the nonlinear position control. The high level subsystem uses ultrasonic and IR sensors to detect the unknown obstacle include static and dynamic obstacle. This approach provides both obstacle avoidance and target-following behaviors and uses only the local information for decision making for the next action. Also, we propose a new algorithm for the identification and solution of the local minima situation during the robot's traversal using the set of fuzzy rules. The system has been successfully demonstrated by simulations and experiments.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

A Voice Command System for Autonomous Robots

  • Hong, Soon-Hyuk;Jeon, Jae-Wook
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.51-57
    • /
    • 2001
  • How to promote students interest is very important in undergraduate engineering education. One of the techniques for achieving this is select appropriate projects and to integrated them with regular courses. In this paper, a voice recognition system for autonomous robots is proposed as a project to educate students about microprocessors efficiently. The proposed system consists of a microprocessor and a voice recognition processor that can recognize a limited unmber of voice patterns. The commands of autono-mous robots are classified and are organized such that one voice recognition processor can distinguish robot commands under each directory. Thus. the proposed system can distinguish more voice commands than one voice recognition processor can. A voice com-mand systems for three autonomous robots is implemented with a microprocessor Inter 80CI196KC and a voice recognition processor HM2007. The advantages in integrating this system with regular courses are also described.

  • PDF

Hole Identification Method Based on Template Matching for Ear Pins Insertion Automation System (이어핀 삽입 자동화 시스템을 위한 템플릿 매칭 기반 홀 판별 방법)

  • Baek, Jonghwan;Lee, Jaeyoul;Jung, Myungsoo;Jang, Minwoo;Shin, Dongho;Seo, Kapho;Hong, Sungho
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.330-333
    • /
    • 2020
  • 장신구 산업은 인건비의 비중이 높고 노동자의 역량에 따라 제품의 제작 작업 시간 및 품질의 편차가 심하다. 이에 산업계의 수요에 맞추어 실리콘 금형 표면 지름 0.75mm 홀에 이어핀을 삽입하는 공정을 자동화하기 위하여 삽입 자동화 시스템이 개발되고 있다. 본 논문에서는 이어핀 삽입 자동화시스템에서 적용할 수 있는 템플릿 매칭 방법과 관심 영역 레이블링을 통한 홀 판별 방법을 제안한다. 제안한 방법의 안정성을 확보하기 위하여 실험을 통해 최적의 매칭 방법과 이진화 기법을 적용하였으며 이어핀 홀의 좌표를 확보하여 X-Y 정밀 이송 시스템에 적용할 수 있다.