도로법에 의거한 도로교통량 상시조사는 매설식 AVC를 통해 12종 차종분류가 이루어지고 있다. 하지만 매설식 AVC 장비는 차량과의 마찰, 도로 균열, 소성변형, 도로공사로 인한 센서의 물리적 파손 등으로 인해 장비 가동률이 낮고, 수집 정보의 정확도와 신뢰도 저하 문제가 발생하고 있다. 이로인해 장비보수 등 유지비용 또한 증가하고 있다. 이러한 문제를 해결하고자 비매설식 AVC 장비 도입을 위한 연구가 진행되고 있으나, 차종을 분류하기 위해 복수의 장비 또는 교통량 정보 매칭을 위한 별도의 DB 구축·운영이 필요하였다. 이에 본 연구에서는 자동차 관리법에 근거하여 운영 중인 자동차관리정보시스템(VMIS)의 차량 제원 정보와 번호판 자동인식 기술(ANPR)을 활용한 12종 차종분류 방안을 마련하고자 하였다. 이를 통해 기존 도로교통량 조사체계를 개선하고 자동차 제원 정보를 활용하여 친환경 차량 분류 등 도로교통량 통계 고도화, 다변화에 기여할 수 있을 것으로 기대된다.
본 연구는 경복궁 후원의 경관을 보존·관리·활용하는 데 필요한 기초적인 정보를 제공하고자 전·현직 청와대 조경 관리자를 대상으로 인터뷰를 시행하였으며, 요약된 주요 결론은 다음과 같다. 첫째, 경복궁 후원의 지형은 노태우 대통령 당시 본관과 관저를 신축하며 절토와 성토가 이루어지며 많은 변화가 있었다. 수계는 과거 경복궁과 연결되어 있었으나 현재는 단절된 상태이다. 둘째, 식재의 경우 가장 중요한 원칙은 대통령의 경호와 의전이었으며 이에 따라 수목이 배치되거나 관리되었다. 수목은 여러 지방에서 우수한 수목들을 도입하여 심었으며, 야생화와 지피식물들도 계절에 따라 자주 교체하였다. 셋째, 시설물 및 동선은 점경물과 휴게시설 등이 대통령의 의전이나 취미, 근무자들의 휴식을 위해 배치되었으며, 백악산 산림지역의 방재를 위해 소방시설을 설치하였다. 넷째, 청와대 시기 경복궁 후원 조경의 가장 큰 변곡점은 노태우 대통령 시절 본관과 관저 신축으로 인한 지형의 변화, 노무현 대통령 시절 공간을 분리하던 A, B 철책의 제거 그리고 이명박 대통령 시절 G20 정상회의를 위해 수행된 대대적인 공간 정비로 파악된다. 경복궁 후원 영역이 2022년 5월 10일 시행된 청와대 국민 개방으로 인해 또 다른 변곡점을 맞을 것으로 예상되며, 현황을 잘 보존하면서 경복궁 후원이 가진 역사적·학술적·경관적 가치를 평가하는 작업이 시행되어야 할 것이다.
최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통 안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만장의 대형차, 소형차, 중형차 별 적재 불량 차량과 일반차량으로 구분 된 데이터 셋 중 종류별로 제공되는 CCTV, 블랙박스, 카메라 시점의 적재 불량 차량 데이터 셋을 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
도로, 철도 등의 토목시설공사는 제한된 구역에서 공정이 반복적으로 진행되는 건축공사와 달리 수십 km의 수평적 작업공간에서 선형 형태로 공정이 진행되고, 개별 공정은 시점부터 종점까지 거리 단위를 갖는 측점(Station)번호로 관리되고 있다. 이러한 이유로 공정의 작업 위치정보가 주요 관리요소가 되고 있으므로, 일정 정보만을 표현하는 간트공정표기반의 공정관리 체계는 한계점을 가질 수 있다. 본 연구에서는 공정의 시작 및 종료일을 나타내는 일정정보와 시작 및 종료 거리를 나타내는 위치정보를 동시에 표현할 수 있는 선형공정표의 구성 방법론을 제시하고, 이에 근거한 선형공정표 생성 시스템을 개발한다. 연구에서 선형공정표의 좌표축은 X, Y축을 각각 거리와 일정 값으로 구성하였으며, 개별 공정은 작업 내용을 유추할 수 있는 심볼로 표현하여 단순 막대도표 방식 대비 공정표의 시인성을 높였다. 개발된 선형공정표 생성 시스템은 철도시설 교량공사의 실제 공정 데이터를 활용하여 실무적 활용성을 검토하였다.
연구목적: 본 연구에서는 지반공동탐사로 발견된 공동자료를 지하시설물과의 원인별 상관관계로 분석하고, AI 알고리즘 기반으로 지반침하 예측지도를 검증하여 시민에게 안전한 도로 환경을 제공하고자한다. 연구방법: 위험도 평가 관련 데이터조사와 빅데이터 수집, AI분석을 위한 데이터 전처리, 그리고 AI 알고리즘을 이용하여 지반침하 위험도 예측지도 검증 등 3가지 단계로 연구를 수행하였다. 연구결과:작성한 지반침하 위험 예측지도를 분석하여 부산시 부산진구와 사하구에 대해 긴급, 우선, 일반 3단계의 공동관리 위험등급 분포를 확인 할 수 있었다. 또한, 지반침하 위험 등급 예측 값을 도로노선의 구간별로 정리하여 긴급 등급이 포함된 도로가 부산진구는 총 61개구간 중 3개소, 사하구는 총 68개구간 중 7개소임을 확인하였으며 각 도로노선별 지반침하 위험 예측 순위를 파악하였다. 결론: 도출된 지반침하 위험 예측지도를 바탕으로 효율적으로 탐사구간을 설정하여 우선 조사, 선제 조치함으로써 시민들의 불안을 해소하고 효율적인 도로유지관리 및 보수, 제도의 개선 등의 부수적인 효과를 얻을 수 있다.
연약점토지반에 도로, 대규모 단지조성공사에 따른 지지력의 부족과 과대한 침하량으로 인하여 여러 가지 어려운 문제가 발생하며 최종 침하량 및 침하시간의 정확한 예측은 지반개량공법의 선정은 물론 사업비, 사업기간에 중대한 영향을 미치게 된다. 현재 사용되고 있는 침하량 예측기법으로는 Terzaghi의 압밀이론을 응용한 Asaoka법과 경험식인 Hyperbolic법, Hoshino법 등이 있다. 그러나 이러한 방법들에 의하여 예측된 침하량과 실제 침하량이 정확히 일치하지 않는 경향이 있다고 알려지고 있다. 게다가 이런 방법 등은 계측결과가 없는 설계단계에서는 사용할 수 없는 단점을 가지고 있다. 본 논문에서는 국내 단지조성공사에서의 데이터와 다양한 테스트 결과값를 이용하여 성토시 침하를 보다 정확하게 예측하기 위해 인공신경망 기법인 Jordan 모델과 Elman-Jordan 모델을 적용하여 가장 적합한 모델구조를 얻고자 하였다. 개선된 인공신경망 모델에 의한 예측치를 실측치와 비교하였고, 결과값에 의하면 Jordan 모델이 Elman-Jordan 모델보다 실측치와 잘 일치하고 콘관입 저항을 이용한 예측치가 표준관입시험을 이용한 결과치보다 실제에 더 가깝다는 것을 알 수 있다. 따라서 더 많은 현장실험 데이터가 확보된다면 콘관입시험을 이용한 순환형 인공신경망 기법이 침하량 예측에 있어 가장 효과적인 방법이 될 것이라 사료된다.
한국건설기술연구원(KICT)과 한국시설안전공단(KISTEC)에서는 전국 국도변에 분포하고 있는 절토사면에 대한 현황조사를 2006년부터 수행하고 있다. 절토사면 현황조사는 절토사면 정밀안전진단과는 달리, 현장에서 기본적인 육안조사를 통해 얻을 수 있는 여러가지 절토사면 특성에 대한 간단한 조사로 절토사면 유지관리의 기본이 되는 자료를 수집하는 것이다. 현황조사는 조사 대상 절토사면의 일반현황, 절토사면 특성, 조사자 소견으로 구성된다. 조사된 자료는 전국에 분포하고 있는 위험절토사면을 파악하고 정밀 안전진단의 조사순위를 결정하는데 활용된다. 본 논문에서는 SPSS (Statistical Package for the Social Sciences) 통계처리 프로그램을 이용하여 2006년부터 2008년까지 강원도와 충청도 지역에서 수집된 10,461개의 국도변 절토사면 현황조사 자료에 대하여 상관분석을 하였다. 현황조사 항목으로 부터 산출한 절토사면의 위험도 점수와 현황조사 항목간의 상관성을 분석하여 상관계수를 산출하였고 이를 통해 절토사면 위험도 점수에 보다 많은 영향을 미치는 현황조사 항목을 평가해보았다. 상관분석결과, 뜬돌 및 낙석 분포, 불연속면의 방향성 및 상부자연사면의 경사가 절토사면 위험도 점수에 영향을 크게 미치는 항목임을 알 수 있었다. 또한, 위험도 점수에 영향을 미치는 항목은 지역별로 약간의 차이가 나타남을 알 수 있었다. 추후, 절토사면 현황조사가 완료되면 우리나라에 분포하고 있는 절토사면의 지역별 특성을 파악할 수 있을 것으로 생각된다.
최근 충분한 주차공간 확보의 어려움으로 심각한 주차문제가 발생하고 있으며 또 다른 교통문제나 사회문제로 이어지기도 한다. 일정 범위 이상의 지역·지구에서 발생하는 주차문제를 해결하기 위해서는 지역특성을 반영한 노상 및 노외주차장에 대한 연구가 필요하며 본 연구에서는 지역·지구의 특성을 고려한 노상 및 노외주차 공급 정책을 수립하는데 기초 연구로 활용하기 위한 주차수요 산정모형을 구축하였다. 연구수행을 위해 대구광역시 동구를 행정동으로 구분하여 주차시설, 주차수요를 조사하였다. 조사시간은 평일에 주간과 야간으로 구분하였으며 차종은 승용차 소형트럭·버스, 대형트럭·버스 3종으로 구분하였다. 주차수요 산정을 위한 설명변수로 단독주택, 공동주택, 근린생활시설, 문화·집회시설, 업무시설, 판매시설 등 6가지의 용도별 건축물 연면적을 사용하였다. 상관분석 결과 6가지 설명변수 중 근린생활시설의 연면적이 노상 및 노외 주차수요와 유의미한 상관관계를 나타내었다. 근린생활시설의 연면적을 설명변수로 하여 회귀분석 모형을 구축하였고 통계적으로 유의미한 결과를 얻었다.
국내에서 공용연수 30년 이상인 노후 교량의 수가 급증하고 있다. 이에 따라 교량 노후도, 상태 및 성능 예측을 바탕으로 한 첨단 유지관리 기술의 중요성이 점차 주목받고 있다. 이 연구에서는 머신러닝 기반의 의사결정나무 및 랜덤포레스트 분류 모델을 사용하여 교량의 안전등급을 예측하는 방법을 제안하였다. 일반국도상 교량 8,850개를 대상으로 해당 모델들을 혼동행렬, 균형 정확도, 재현율, ROC 곡선 및 AUC와 같이 여러가지 평가 지표를 통해 분석한 결과 전반적으로 랜덤포레스트가 의사결정나무보다 더 나은 예측 성능을 보유하였다. 특히 랜덤포레스트 중 랜덤 언더 샘플링 기법은 노후도가 비교적 커서 유지관리에 주의를 기울여야 하는 C, D등급 교량에 대해 재현율 83.4%로 다른 샘플링 기법들보다 예측 성능이 더 뛰어난 것으로 나타났다. 제안된 모델은 최근 점검이 실시되지 않은 교량들의 신속한 안전등급 파악 및 효율적이고 경제적인 유지관리 계획 수립에 유용하게 활용될 수 있을 것으로 기대된다.
자율주행차량에서 핵심적인 역할을 수행하는 LiDAR의 주변 환경 검지 시인성을 향상시키기 위해서는 LiDAR 성능의 개선 뿐만 아니라, 검지 물체의 개선도 필요하다. 이에 본 연구는 LiDAR 센서를 통해 수집되는 point cloud 데이터 기반의 형상인식 알고리즘을 활용하여 자율주행차량이 인식하기에 유리한 교통안전표지 형상과 개선방안을 제시하였다. 실험을 위해 point cloud 활용 연구에서 보편적으로 활용되는 DBSCAN 기반의 도로표지 인식·분류 알고리즘을 개발하고 실도로 환경에서 32ch LiDAR를 활용, 도로표지 5종에 대한 인식 성능 실험을 수행하였다. 연구결과, 정사각형이나 원형보다는 상하 비대칭이 있는 정삼각형, 직사각형과 같은 형상이 보다 적은 점군의 수로도 검지가 가능하고, 83% 이상의 높은 분류 정확도를 보였다. 또한, 정사각형 표지의 크기를 1.5배 확대할 경우, 분류 정확도를 향상시킬 수 있었다. 이러한 결과는 미래 자율주행 시대의 센서를 위한 전용 도로·교통안전시설물 개선 및 신규 시설물 개발에 활용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.