• Title/Summary/Keyword: Road tunnel

Search Result 588, Processing Time 0.025 seconds

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Comparative Study on the Characteristics of Ground Vibrations Produced from Borehole Blast Tests Using Electronic and Electric Detonators (전자뇌관과 전기뇌관을 사용한 시추공 발파시험에서의 지반진동 특성에 관한 비교 연구)

  • Choi, Hyung-Bin;Won, Yeon-Ho
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.37-49
    • /
    • 2010
  • Ground vibration caused by blasting in the urban area close to structures can give some indirect damage to human body and may lead to structural damage to buildings. At the stage of design or when complaints were filed by residents, the test blasting in borehole, which is most practical for expressing simple vibration wave form quantitatively, is usually chosen for assessing the degree of damage to structures. In this paper, some lessons gained from the application of electronic detonator triggering system in borehole test blasting are presented. The difference in delay time of detonator when borehole is blasted by electronic detonator and electric detonator are discussed. The peak particle velocities measured at the structure embedded in the similar rock layer to main line of tunnel at test site and measured at the road surface just above the tunnel having different overburden layers were analysed to draw their relationship. By comparing the results with those appearing in some published literatures, the usefulness of the borehole test blasting and the importance of delay time of detonator are addressed.

Evaluation on Riding comfort of A Passenger with Various Surface Textures of Concrete Pavement in Tunnels (터널 내 콘크리트포장 표면처리공법 별 탑승자의 주행쾌적성 평가)

  • Lee, Kyungbae;Lee, Jaehoon;Sohn, Duecksu;Kwon, Soonmin
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.155-164
    • /
    • 2014
  • PURPOSES : The purpose of this article is to compare and evaluate the riding comfort of a passenger in tunnels depending on different surface textures of concrete pavement. METHODS : Evaluation of riding comfort is conducted at 17 sections, which have different surface texture such as transverse tinned(TT), longitudinal tinned(LT) and diamond grinded(DG). A triaxial accelerometer was set up on the passenger seat surface of the test vehicle to measure vibrations of an occupant, then the effects of vibration on comfort and health were evaluated by ISO 2631. And microphones were installed at passenger's ears height to measure sound pressure level(SPL) in the test vehicle. Additionally, a surface microphone was installed on the inside of wheel arch to evaluate noise between tire and pavement by NCPX method. All tests were conducted cruising at 100km/h. RESULTS : The results of all tests are as follows. First, both vibration magnitudes for comfort and for health in LT and DG sections are almost same and they represent lower than those in TT sections. Second, the average SPL of DG shows the lowest decibels among them. And third, it is founded that interior noise is significantly affected by noise between tire and pavement. CONCLUSIONS : It may be concluded that DG can provide more excellent riding comfort to passenger than LT or TT. Therefore, it is necessary to consider applying DG to existing pavement surface to improve surface condition when the driving environment especially requires riding comfort like a long tunnel.

A study on the program development for optimizing the supply and exhaust port opening ratio in road tunnels with transverse ventilation system (횡류식 도로터널의 급배기구 개도율 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.517-532
    • /
    • 2017
  • The transverse ventilation system, commonly applied to urban tunnel, is necessary to be distributed with airflow uniformly. In this study, we developed a program that can optimize the opening ratio of ports to ensure ventilation performance of design criteria through a uniform airflow distribution even though ventilation interval becomes longer. And program's prediction performance was verified by comparison with TUNVEN DUCT program. For comparison, Semi-transverse ventilation system was applied. Both programs predicted a similar port size and air flow distribution, and the variation range of the calculated values was 11.71% and 1.36%, respectively. This program is very useful for port optimization design of transverse and semi-transverse ventilation system, because it is possible to analyze various tunnel lengths and supply/exhaust port installation conditions.

Experimental and numerical studies of aerodynamic forces on vehicles and bridges

  • Han, Yan;Hu, Jiexuan;Cai, C.S.;Chen, Zhengqing;Li, Chunguang
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-184
    • /
    • 2013
  • An accurate identification of the aerodynamic characteristics of vehicles and the bridge is the premise for the coupled vibration analysis of a wind-vehicle-bridge system. At present, the interaction of aerodynamic forces between the road vehicles and bridge is ignored in most previous studies. In the present study, an experimental setup was developed to measure the aerodynamic characteristics of vehicles and the bridge for different cases in a wind tunnel considering the aerodynamic interference. The influence of the wind turbulence, the wind speed, the vehicle interference, and the vehicle position on the aerodynamic coefficients of vehicles, and the influence of vehicles on the static coefficients of the bridge were investigated, based on the experimental results. The variations in the aerodynamic characteristics of vehicles and the bridge were studied and the measured results were validated according to the results of surface pressure measurements on the vehicle and the bridge. The measured results were further validated by comparing the measured results with values derived numerically. The measured results showed that the wind turbulence, the vehicle interference, and the vehicle position significantly affected the aerodynamic coefficients of vehicles. However, the influence of the wind speed on the aerodynamic coefficients of the studied vehicle is small. The static coefficients of the bridge were also significantly influenced by the presence of vehicles.

Numerical analysis on the general requirement of permanently unsupported tunnels (영구 무지보 터널의 일반적인 조건에 관한 수치해석적 연구)

  • Yoon, Ji-Sun;Ryu, Ju-Yeol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.209-216
    • /
    • 2003
  • The present with in this country, rock bolt installation, shotcrete, and concrete lining in construction order has become accepted as a general tunnelling method in NATM. On the other hand Unlined tunnelling method, which was developed by many countries near Scandinavian Peninsula with hard rocks comparatively, has recently been introduced all over the world, and numerous studies about that have been being devoted to domestic tunnels. Unlined tunnelling method has been developed on the basis of the permanently unsupported openings, and general 7 requirements for them were suggested by Nick Barton. There are no case record about these conditions for Q-system in this country. Therefore, input parameters for Q-system under these conditions were applied to general road tunnel cross-section and numerical analyses for each condition were executed with UDEC-BB, Distinct Element Method.

  • PDF

An Evaluation of Treatment Technologies for Anti-scale in Drainage Works Using Simulation Test of Road Tunnel (도로터널의 모사시험을 통한 배수공 스케일 억제 기술 평가)

  • Park, Eun-Hyung;Nam, Joong-Woo;Han, Yoon-Su;Kim, Hyun-Gi;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.5-15
    • /
    • 2013
  • Clogging phenomenon is one of the important problems in deteriorated tunnels, and it caused inhibition of drainage system by long-term behavior. Clogging phenomenon is mainly composed of $CaCO_3$ in the form calcite. Calcite is generally created by the reaction of $Ca(OH)_2$ with $CO_2$ emitted from vehicles. The structure of deteriorated tunnels was simulated and the setting of outflow from drainage pipe was observed in this study. The test was experienced by changing the slope of drainage system because existing drainage system was pracitced almost below $5^{\circ}$. As a result, in case of drainage system's slope is $2^{\circ}$, Quantum Stick has an effect for prohibiting scale in drainage system, but magnetic treatment was not effective. As a result, in case of drainage system's slope is $5^{\circ}$, both technologies were effective for prohibiting scale in drainage system, but Quantum Stick was especially more effective than magnetic treatment.

Introduction of Q-slope and its Application Case in a Open Pit Coal Mine (Q-slope의 소개와 노천채탄장에서의 적용 사례)

  • Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.305-317
    • /
    • 2019
  • The RMR and Q-system for characterizing rock mass and drilling core, and for estimating the support and reinforcement measures in mine galleries, tunnels and caverns have been widely used by engineers. SMR has been widely used in the rock mass classification for rock slope, but Q-Slope has been introduced into slopes since 2015. In the last ten years, a modified Q-system called Q-slope has been tested by the many authors for application to the benches in open pit mines and excavated road rock slopes. The results have shown that a simple correlation exists between Q-slope values and the long-term stable and unsupported slope angles. Just as RMR and Q have been used together in a tunnel or underground space and complemented by comparison, Q-Slope can be used in parallel with SMR. This paper introduces how to use Q-Slope which has not been announced in Korea and application examples of Pasir open pit coal mine in Indonesia.

The difference in the slope supported system when excavating twin tunnels: Model test and numerical simulation

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Zhang, Jilu;Xu, Bin;Xiong, Fei;Elmageed, Ahmed Abd
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.15-30
    • /
    • 2022
  • Slope stability during the excavation of twin road tunnels is considered crucial in terms of safety. In this research, physical model testing and numerical analysis were used to investigate the characteristics of the settlement (uz) and vertical stresses (σz) along the two tunnel sections. First, two model tests for a (fill-rock) slope were conducted to study the settlement and stresses in presence and absence of slope support (plate support system). The law and value of the result were then validated by using a numerical model (FEM) based on the physical model. In addition, a finite element model with a slope supported by piles (equivalent to the plate) was used for comparison purposes. In the physical model, several rows of plates have been added to demonstrate the capacity of these plates to sustain the slope by comparing excavating twin tunnels in supported and unsupported slope, the results show that this support was effective in the upper part of the slope, while in the middle and lower part the support was limited. Additionally, the plates appear to induce less settlement in several areas of the slope with differing settlement and stress distribution as compared to piles. Furthermore, as a results of the previous mentioned investigation, there are many factors influence the stress and settlement distribution, such as the slope's cover depth, movement during excavation, buried structures such as the tunnel lining, plates or piles, and the interaction between all of these components.

Study of the Characteristic and Optimization of Induction Lamp according to Gas Pressure and Amalgam Type (고출력 무전극램프의 가스압 및 아말감종류에 따른 특성분석 및 최적화에 관한 연구)

  • Chung, Young-Il;Jung, Dae-Chul;Kim, Yong-Kab;Park, Dae-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Currently, road lightings are installed with less than 400W of existing metal halide lamps. These road lightings are being replaced by energy-saving lightings. Induction lamps are expected to be more actively replaced with targets for tunnel lighting and high ceiling lighting. Therefore, it is necessary to develop high efficiency, high power induction lamps system. In this study, the gas type & pressure, amalgam type were designed for the high power of the induction lamps. And induction lamp system was optimized through electrical, optical characteristics analysis. It is optimized to the gas pressure 300~350 [mmHg] for the discharge tube of high power induction lamp and ferrite core. The driving circuit matching was completed with a induction lamp using indium amalgam. The rated power consumption of the induction lamp was optimized with 250 W (rated ${\pm}10%$)