• Title/Summary/Keyword: Road materials

Search Result 636, Processing Time 0.028 seconds

Risk analysis of road cave-in of storm sewer lateral using zoom camera (줌카메라를 활용한 빗물받이 연결관의 도로함몰 리스크 분석)

  • Han, Sangjong;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.681-690
    • /
    • 2014
  • It is known that sewer problems are the major causes of road cave-in. The objective of this study is to analyze the risk of road cave-in due to storm sewer laterals. We investigated 174 storm sewer laterals using a zoom camera at O-dong area in Seoul. The causes of road cave-in were classified into five cases: breakage of rigid pipe, deformation of flexible pipe, out of pipeline alignment, changing pipe material or changing pipe diameter, and a poor linkage between lateral and sewer. In addition, all defects were sorted into five grades based on the severity rating at storm sewer laterals. In this study, the most fragile pipe materials were found to be concrete pipe and polyethylene pipe, which recorded 2.3 and 1.69 defect rates. With regard to the causes of road cave-in, deformation of flexible pipe has a large influence on road cave-in at present. On a long-term basis, the two causes, out of pipeline alignment and a poor linkage between lateral and sewer, could have more influence on road cave-in.

A Study on the Early-stage Storm Runoff Treatment for the Reduction of Non-point Pollution Materials on the Road (도로상의 비점오염물질 저감을 위한 초기 우수유출수 처리에 관한 연구)

  • Roh, Sung-Duk;Lee, Dae-Keun;Chun, Yang-Kun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.525-533
    • /
    • 2004
  • The object ofthis study was to test for STORMSYS process that composed Catch Basin and Stormsys(three units: vortex solids separator, filter media bed and vegetated filter strips). It could be applied to treat the first-flush non-point pollution materials on the road(especially, motorway). This study investigated that the runoff characteristics of non-point pollutions containing the heavy metal(Fe, Zn and Cu) by rainfall showed relatively high pollution concentration in the early-stage storm runoff on the road, which seems to be caused by the vehicular traffic, and showed the rapid reduction of pollution concentration on the basis of about 5mm rainfall volume. As the number of the non-rainy days were increased, the pollution concentration by storm runoff was increased, also. As a test result of this process, the average removal efficiency of BOD, $COD_{mn}$, SS, T-N and T-P over the testing period were 92.7%,88.6%,97.4%,93.0% and 93.3%, respectively. Also, the average removal efficiency of n-Hexane, Fe, Zn and Cu were 86.7%, 96.1%, 84.4% and 78.4%, respectively. As shown in the characteristics of storm runoff, the non-point pollution materials have high pollution concentration in the early-stage storm runoff on the road, the installation of STORMSYS process is expected to reduce considerable amount of non-point pollutions.

Synthesis of Polyamine Grafted Chitosan Copolymer and Evaluation of Its Corrosion Inhibition Performance

  • Li, Heping;Li, Hui;Liu, Yi;Huang, Xiaohua
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.142-147
    • /
    • 2015
  • Two new chitosan derivatives, polyamine grafted chitosan copolymers have been synthesized for corrosion protection of carbon steel in acidic medium. First, methyl acrylate graft chitosan copolymer (CS-MAA) was prepared by the reaction of chitosan (CS) and methyl acrylate (MAA) via the Michael addition reaction. Then, CS-MAA was reacted with ethylene diamine (EN) and triethylene tetramine (TN) respectively to synthesize ethylene diamine grafted chitosan copolymer (CS-MAA-EN) and triethylene tetramine grafted chitosan copolymer (CS-MAA-TN), and the structures were characterized by Fourier-transform infrared spectroscopy (FT-IR). At last, the corrosion inhibition activities on Q235 carbon steel were investigated by using gravimetric measurements, metallographic microscope, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The compounds CS-MAA-EN and CS-MAA-TN show an appreciable corrosion inhibition property against corrosion of Q235 carbon steel in 5% HCl solution at $25^{\circ}C$. It has been observed that CS-MAA-EN shows greater corrosion inhibition efficiency than CS-MAA-TN. The inhibition efficiency of CS-MAA-EN was close to 90% when the mass fraction concentration was 0.2%~0.3%; the inhibition efficiency of CS-MAA-TN was close to 85% when the mass fraction concentration was 0.02%. The present work provided very promising results in the preparation of green corrosion inhibitors.

Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement (콘크리트 포장의 급속 보수를 위한 산화마그네슘계열 단면복구재의 성능에 대한 실험적 연구)

  • Lee, Hyeongi;Ann, Kiyong;Sim, Jongsung
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.43-55
    • /
    • 2016
  • PURPOSES : This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to $KH_2PO_4$ ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.

Feasibility Study with Several Sorption Materials to Treat Road Runoff Pollutions (흡착 소재별 도로 노면 유출 오염원의 저감성 비교 연구)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.709-717
    • /
    • 2006
  • This research was conducted to figure out the feasibility of several sorption materials to treat various pollutants in road runoff. In advance of the major feasibility test with various sorption materials, the separation process with $1.2{\mu}m$ filter was conducted and showed that slight portion of pollutants was removed(Orgamic pollutant - 20%, Nutrient salt - 50%, Heavy metals - 0~30%). To remove dissolved pollutants in runoff, various materials were tested through an isotherm sorption experiment. As a result, GAC showed most effective material among them to lessen most contaminants such as organic compounds and nutrients. On the other hand, ion-exchange resin and Zeolite showed limited usefulness on the some heavy metals. Freundlich model was most suitable for the current experiment data, and the amount of adsorbent (GAC) could calculated based on this model.

Study of a Ray-Tracing Method for Optimized Road Light Design

  • Oh, Seon;Choi, Dae-Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.194-196
    • /
    • 2010
  • A study is presented of improved road light design for drivers and pedestrians with the use of a ray- or reverse ray-tracing method. Many existing road lights are unsuitable for drivers and pedestrians because of serious problems such as glare effect or randomicity of illuminated areas. This situation has arisen because in customary design methods the emphasis has been on simple factors such as luminance or electrical power. However a high luminance or electrical power consumption, alone, do not guarantee bright and good road lighting. So we have applied a ray-tracing method to the design of a road light reflector with the goals of ensuring that illuminated objects on the road can be seen more clearly and that the illuminating light is more comfortable for the eyes of drivers and pedestrians. We have set design targets for factors such as the uniformity of lighting on the road area per road light, the shading angles and the continuous luminance uniformity on long lengths of road. For set heights of the eyes of drivers and pedestrians eyes we have calculated a design guideline for the achievement of the above design targets. Then we designed a road light reflector using the reverse ray-tracing approach. Also we have achieved the same luminance on the road with almost half the power consumption, through the reduction of lighty loss. In an ideal design optimum parameters are suggested to be a shading angle of 75 degrees and a luminance uniformity of 0.5 on the road area. This reflector performance is achievable with a 250 watt power consumption ceramic discharge metal light source.

A study on the tire structure vibration for road noise reduction and chassis design (자동차 도로소음 저감과 샤시 설계를 위한 타이어 구조진동에 관한 연구)

  • Song, Youn-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.137-144
    • /
    • 1995
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation was carried out to examine the characteris- tics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of this studies it has been confirmed that the specific ranges of natural frequency of tire exciting the suspension and chassis system. And the tire, axle and chassis natural frequency of automobile govern the road noise. Results show that material properties of tire and experimental condition are major parameter for shifting of tire natural frequency. These results would be utilized as basic materials for the design of chassis design with papametric study, which enables a designer of an automobile to foresee the influence of the various design factors or operating conditions.

  • PDF

The Thermal conductivity analysis on the pavement applying geothermal snow melting system (지열 융설시스템을 적용한 포장체에서의 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Seo, Un-Jong;Lee, Seung-Ha;Lee, Joo-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.221-228
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. The thermal conductivity study is essential that be applied the geothermal snow melting system according to heating exchanger pipe laying of lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. And Many variables are discovered from numerical analyzes of the same conditions with model test.

  • PDF

Temperature Reduction of Concrete Pavement Using Glass Bead Materials

  • Pancar, Erhan Burak;Akpinar, Muhammet Vefa
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • In this study, different proportions of glass beads used for road marking were added into the concrete samples to reduce the temperature gradient through the concrete pavement thickness. It is well known that decreasing the temperature gradient reduces the risk of thermal cracking and increases the service life of concrete pavement. The extent of alkali-silica reaction (ASR) produced with partial replacement of fine aggregate by glass bead was investigated and compressive strength of concrete samples with different proportion of glass bead in their mix designs were measured in this study. Ideal results were obtained with less than 0.850 mm diameter size glass beads were used (19 % by total weight of aggregate) for C30/37 class concrete. Top and bottom surface temperatures of two different C30/37 strength class concrete slabs with and without glass beads were measured. It was identified that, using glass bead in concrete mix design, reduces the temperature differences between top and bottom surfaces of concrete pavement. The study presented herein provides important results on the necessity of regulating concrete road mix design specifications according to regions and climates to reduce the temperature gradient values which are very important in concrete road design.