• Title/Summary/Keyword: Road map-based path planning

Search Result 8, Processing Time 0.024 seconds

High-Definition Map-based Local Path Planning for Dynamic and Static Obstacle Avoidance (동적 및 정적 물체 회피를 위한 정밀 도로지도 기반 지역 경로 계획)

  • Jung, Euigon;Song, Wonho;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.112-121
    • /
    • 2021
  • Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.

Design of Preprocessing Algorithm for HD-Map-based Global Path Generation (정밀도로지도 기반 전역경로 생성을 위한 전처리 알고리즘 개발)

  • Hong, Seungwoo;Son, Weonil;Park, Kihong;Kwun, Suktae;Choi, Inseong;Cho, Sungwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.273-286
    • /
    • 2022
  • An HD map is essential in the automated driving of level 4 and above to generate the vehicle's global path since it contains road information and each road's lane information. Therefore, all the road elements in the HD map must be correctly defined to construct the correct road network necessary to generate the global path. But unfortunately, it is not difficult to find various errors even in the most recent HD maps. Hence, a preprocessing algorithm has been developed to detect and correct errors in the HD map. This error detection and correction result in constructing the correct road network for use in global path planning. Furthermore, the algorithm was tested on real roads' HD maps, demonstrating its validity.

Local Path Plan for Unpaved Road in Rough Environment (야지환경의 비포장도로용 지역경로계획)

  • Lee, Young-Il;Choe, Tok Son;Park, Yong Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2013
  • It is required for UGV(Unmanned Ground Vehicle) to have a LPP(Local Path Plan) component which generate a local path via the center of road by analyzing binary map to travel autonomously unpaved road in rough environment. In this paper, we present the method of boundary estimation for unpaved road and a local path planning method based on RANGER algorithm using the estimated boundary. In specially, the paper presents an approach to estimate road boundary and the selection method of candidate path to minimize the problem of zigzag driving based on Bayesian probability reasoning. Field test is conducted with scenarios in rough environment in which bush, tree and unpaved road are included and the performance of proposed method is validated.

Parallelization of Probabilistic RoadMap for Generating UAV Path on a DTED Map (DTED 맵에서 무인기 경로 생성을 위한 Probabilistic RoadMap 병렬화)

  • Noh, Geemoon;Park, Jihoon;Min, Chanoh;Lee, Daewoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.157-164
    • /
    • 2022
  • In this paper, we describe how to implement the mountainous terrain, radar, and air defense network for UAV path planning in a 3-D environment, and perform path planning and re-planning using the PRM algorithm, a sampling-based path planning algorithm. In the case of the original PRM algorithm, the calculation to check whether there is an obstacle between the nodes is performed 1:1 between nodes and is performed continuously, so the amount of calculation is greatly affected by the number of nodes or the linked distance between nodes. To improve this part, the proposed LineGridMask method simplifies the method of checking whether obstacles exist, and reduces the calculation time of the path planning through parallelization. Finally, comparing performance with existing PRM algorithms confirmed that computational time was reduced by up to 88% in path planning and up to 94% in re-planning.

RL-based Path Planning for SLAM Uncertainty Minimization in Urban Mapping (도시환경 매핑 시 SLAM 불확실성 최소화를 위한 강화 학습 기반 경로 계획법)

  • Cho, Younghun;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2021
  • For the Simultaneous Localization and Mapping (SLAM) problem, a different path results in different SLAM results. Usually, SLAM follows a trail of input data. Active SLAM, which determines where to sense for the next step, can suggest a better path for a better SLAM result during the data acquisition step. In this paper, we will use reinforcement learning to find where to perceive. By assigning entire target area coverage to a goal and uncertainty as a negative reward, the reinforcement learning network finds an optimal path to minimize trajectory uncertainty and maximize map coverage. However, most active SLAM researches are performed in indoor or aerial environments where robots can move in every direction. In the urban environment, vehicles only can move following road structure and traffic rules. Graph structure can efficiently express road environment, considering crossroads and streets as nodes and edges, respectively. In this paper, we propose a novel method to find optimal SLAM path using graph structure and reinforcement learning technique.

Simulating Group Movement on a Roadmap-based Path (로드맵 기반 경로에서의 그룹 이동 시뮬레이션)

  • Yu, Kyeon-Ah;Cho, Su-Jin;Kim, Kyung-Hye
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.105-114
    • /
    • 2011
  • The roadmap-based planning is a path planning method which is used widely for a goal-directed movement in Robotics and has been applied to the world of computer animation such as computer games. However it is unnatural for computer characters to follow the path planned by the roadmap method as it is performed in Robotics. Flocking which is used for realistic and natural movements in computer animation enables character's movement by using a few simple rules without planning unlike the roadmap method. However it is impossible to achieve a goal-directed movement with flocking only because it does not keep states. In this paper we propose a simulation method which combines planning based on the road map with reactive actions for natural movements along the path planned. We define and implement steering behaviors for a leader which are needed to follow the trajectory naturally by analysing characteristics of roadmap-based paths and for the rest of members which follow the leader in various manners by detecting obstacles. The simulations are performed and demonstrated by using the implemented steering behaviors on every possible combination of roadmap-based path planning methods and models of configuration spaces. We also show that the detection of obstacle-collisions can be done effectively because paths are planned in the configuration space in which a moving object is reduced to a point.

An Autonomous Mobile System based on Detection of the Road Surface Condition (노면 상태 검출에 기반한 자율 주행 시스템)

  • Jeong, Hye-C.;Seo, Suk-T.;Lee, Sang-H.;Lee, In-K.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.599-604
    • /
    • 2008
  • Recently, many researches for autonomous mobile system have been proposed, which can recognize surrounded environment and navigate to destination without outside intervention. The basic sufficient condition for the autonomous mobile system is to navigate to destination safely without accident. In this paper, we propose a path planning method in local region for safe navigation of autonomous system through evaluation of the road surface distortion(damaged/deformed road, unpaved road, obstacle and etc.). We use laser distance sensor to get the information on the road surface distortion and apply image binalization method to evaluate safe region in the detected local region. We show the validity of the proposed method through the computer simulation based on the artificial local road map.

Quickly Map Renewal through IPM-based Image Matching with High-Definition Map (IPM 기반 정밀도로지도 매칭을 통한 지도 신속 갱신 방법)

  • Kim, Duk-Jung;Lee, Won-Jong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1163-1175
    • /
    • 2021
  • In autonomous driving, road markings are an essential element for object tracking, path planning and they are able to provide important information for localization. This paper presents an approach to update and measure road surface markers with HD maps as well as matching using inverse perspective mapping. The IPM removes perspective effects from the vehicle's front camera image and remaps them to the 2D domain to create a bird-view region to fit with HD map regions. In addition, letters and arrows such as stop lines, crosswalks, dotted lines, and straight lines are recognized and compared to objects on the HD map to determine whether they are updated. The localization of a newly installed object can be obtained by referring to the measurement value of the surrounding object on the HD map. Therefore, we are able to obtain high accuracy update results with very low computational costs and low-cost cameras and GNSS/INS sensors alone.