DOI QR코드

DOI QR Code

Parallelization of Probabilistic RoadMap for Generating UAV Path on a DTED Map

DTED 맵에서 무인기 경로 생성을 위한 Probabilistic RoadMap 병렬화

  • Received : 2021.12.07
  • Accepted : 2022.02.08
  • Published : 2022.03.01

Abstract

In this paper, we describe how to implement the mountainous terrain, radar, and air defense network for UAV path planning in a 3-D environment, and perform path planning and re-planning using the PRM algorithm, a sampling-based path planning algorithm. In the case of the original PRM algorithm, the calculation to check whether there is an obstacle between the nodes is performed 1:1 between nodes and is performed continuously, so the amount of calculation is greatly affected by the number of nodes or the linked distance between nodes. To improve this part, the proposed LineGridMask method simplifies the method of checking whether obstacles exist, and reduces the calculation time of the path planning through parallelization. Finally, comparing performance with existing PRM algorithms confirmed that computational time was reduced by up to 88% in path planning and up to 94% in re-planning.

본 논문에서는 무인기의 경로 계획을 위한 산악 지형, 레이더 그리고 방공망 등을 3차원 환경으로 구현하고, Sampling 기반의 경로 계획 알고리즘인 PRM 알고리즘을 사용하여 경로 계획 및 재계획을 수행하는 방안에 대해 서술한다. 기존의 PRM 알고리즘의 경우 생성된 노드 사이에 장애물 존재 여부를 확인하기 위한 계산이 노드 간 1:1로 이루어지고 연속적으로 수행되어 노드 수나 노드를 연결하는 거리에 계산량이 크게 영향을 받는다. 이러한 부분을 개선하기 위해 제안하는 LineGridMask 기법을 통해 장애물 존재 여부 확인 방식을 단순화하고, 병렬화를 통해 경로 계획의 계산 시간을 감소시킨다. 마지막으로 기존 PRM 알고리즘과의 성능을 비교한 결과, 경로 계획에서는 최대 88%, 재계획의 경우 최대 94%까지 계산 시간이 감소하였음을 확인하였다.

Keywords

Acknowledgement

본 논문은 한국산업기술평가관리원의 재원으로 항공우주부품기술개발사업-수출유망부품및핵심기술개발(과제번호: 20002712) 지원으로 작성되었습니다.

References

  1. Gonzalez-Arribas, D., Soler, M., Sanjurjo-Rivo, M., Kamgarpour, M. and Simarro, J., "Robust aircraft trajectory planning under uncertain convective environments with optimal control and rapidly developing thunderstorms," Aerospace Science and Technology, Vol. 89, 2019, pp. 445~459. https://doi.org/10.1016/j.ast.2019.03.051
  2. Han, H., Qiao, D., Chen, H. and Li, X., "Rapid planning for aerocapture trajectory via convex optimization," Aerospace Science and Technology, Vol. 84, 2019, pp. 763~775. https://doi.org/10.1016/j.ast.2018.11.009
  3. Noreen, I., Khan, A. and Habib, Z., "Optimal path planning using RRT* based approaches: a survey and future directions," International Journal of Advanced Computer Science and Applications, 2016, pp. 97~107.
  4. Dijkstra, E. W., "A note on two problems in connexion with graphs," Numerische Mathematik, Vol. 1, No. 1, 1959, pp. 269~271. https://doi.org/10.1007/BF01386390
  5. Hart, P. E., Nilsson, N. J. and Raphael, B., "A formal basis for the heuristic determination of minimum cost paths," IEEE Transactions on Systems Science and Cybernetics, Vol. 4, No. 2, 1968, pp. 100~107. https://doi.org/10.1109/TSSC.1968.300136
  6. Stentz, A., "Optimal and efficient path planning for unknown and dynamic environments," Carnegie Mellon University, Pittsburgh, The Robotics Institute, 1993.
  7. Gerke, M., "Genetic path planning for mobile robots," Proceedings of American Control Conference (ACC), Vol. 4, 1999, pp. 2424~2429.
  8. Garcia, M. A. P., Montiel, O., Castillo, O., Sepulveda, R. and Melin, P., "Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation," Applied Soft Computing, Vol. 9, No. 3, 2009, pp. 1102~1110. https://doi.org/10.1016/j.asoc.2009.02.014
  9. LaValle, S. M. and Kuffner Jr., J. J., "Randomized kinodynamic planning," The International Journal of Robotics Research, Vol. 20, No. 5, 2001, pp. 378~400. https://doi.org/10.1177/02783640122067453
  10. Kavraki, L. E., Svestka, P., Latombe, J. C. and Overmars, M. H., "Probabilistic roadmaps for path planning in high-dimensional configuration spaces," IEEE Transactions on Robotics and Automation, Vol. 12, No. 4, 1996, pp. 566~580. https://doi.org/10.1109/70.508439