• Title/Summary/Keyword: Road images

Search Result 445, Processing Time 0.036 seconds

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

Day and night license plate detection using tail-light color and image features of license plate in driving road images

  • Kim, Lok-Young;Choi, Yeong-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2015
  • In this paper, we propose a license plate detection method of running cars in various road images. The proposed method first classifies the road image into day and night images to improve detection accuracy, and then the tail-light regions are detected by finding red color areas in RGB color space. The candidate regions of the license plate areas are detected by using symmetrical property, size, width and variance of the tail-light regions, and to find the license plate areas of the various sizes the morphological operations with adaptive size structuring elements are applied. Finally, the plate area is verified and confirmed with the geometrical and image features of the license plate areas. The proposed method was tested with the various road images and the detection rates (precisions) of 84.2% of day images and 87.4% of night images were achieved.

Detection Algorithm of Road Surface Damage Using Adversarial Learning (적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.95-105
    • /
    • 2021
  • Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.

A Fuzzy Neural-Network Algorithm for Noisiness Recognition of Road Images (도로영상의 잡음도 식별을 위한 퍼지신경망 알고리즘)

  • 이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.147-159
    • /
    • 2002
  • This paper proposes a method to recognize the noisiness of road images connected with the extraction of lane-related information in order to prevent the usage of erroneous information. The proposed method uses a fuzzy neural network(FNN) with the back-Propagation loaming algorithm. The U decides road images good or bad with respect to visibility of lane marks on road images. Most input parameters to the FNN are extracted from an edge distribution function(EDF), a function of edge histogram constructed by edge phase and norm. The shape of the EDF is deeply correlated to the visibility of lane marks of road image. Experimental results obtained by simulations with real images taken by various lighting and weather conditions show that the proposed method was quite successful, providing decision-making of noisiness with about 99%.

A Study on the Road Extraction Using Wavelet Transformation

  • Lee, Byoung-Kil;Kwon, Keum-Sun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.405-410
    • /
    • 1999
  • Topographic maps can be made and updated with satellite images, but it requires many human interactions that are inefficient and costly. Therefore, the automatizing of the road extraction procedures could increase efficiency in terms of time and cost. Although methods of extracting roads, railroads and rivers from satellite images have been developed in many studies, studies on the road extraction from satellite images of urbanized area are still not relevant, because many artificial components In the city makes the delineation of the roads difficult. So, to extract roads from high resolution satellite images of urbanized area, this study has proposed the combined use of wavelet transform and multi-resolution analysis. In consequence, this study verifies that it is possible to automatize the road extraction from satellite images of urbanized area. And to realize the automatization more completely, various algorithms need to be developed.

  • PDF

A Study on Comparison of Road Surface Images to Provide Information on Specific Road Conditions (도로 상태 정보 안내를 위한 도로표면 영상 비교에 관한 연구)

  • Jang, Eun-Gyeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.4
    • /
    • pp.31-39
    • /
    • 2012
  • On rainy days, water films form on wet road surfaces and reduce the braking force of vehicles, which often ends up in accidents. For safe driving, the road information signage provides information on road and weather conditions warning drivers of wet road conditions. Still, current information on road conditions is neither localized nor detailed but universal. The present study used the images on CCTVs installed on roads to compare the images of road surfaces in an attempt to suggest a mechanism determining factors that hamper safe driving based on the images. In the image comparison, a normal road image taken on a sunny day is used as an original image, against which road conditions occurring on rainy days are categorized and determined on a case-by-case basis to provide drivers with early warning for the sake of safe driving.

Lane Detection Using Road Geometry Estimation

  • Lee, Choon-Young;Park, Min-Seok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.226-231
    • /
    • 1998
  • This paper describes how a priori road geometry and its estimation may be used to detect road boundaries and lane markings in road scene images. We assume flat road and road boundaries and lane markings are all Bertrand curves which have common principal normal vectors. An active contour is used for the detection of road boundary, and we reconstruct its geometric property and make use of it to detect lane markings. Our approach to detect road boundary is based on minimizing energy function including edge related term and geometric constraint term. Lane position is estimated by pixel intensity statistics along the parallel curve shifted properly from boundary of the road. We will show the validity of our algorithm by processing real road images.

  • PDF

Decision of Road Direction by Polygonal Approximation. (다각근사법을 이용한 도로방향 결정)

  • Lim, Young-Cheol;Park, Jong-Gun;Kim, Eui-Sun;Park, Jin-Su;Park, Chang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1398-1400
    • /
    • 1996
  • In this paper, a method of the decision of the road direction for ALV(Autonomous Land Vehicle) road following by region-based segmentation is presented. The decision of the road direction requires extracting road regions from images in real-time to guide the navigation of ALV on the roadway. Two thresholds to discriminate between road and non-road region in the image are easily decided, using knowledge of problem region and polygonal approximation that searches multiple peaks and valleys in histogram of a road image. The most likely road region of the binary image is selected from original image by these steps. The location of a vanishing point to indicate the direction of the road can be obtained applying it to X-Y profile of the binary road region again. It can successfully steer a ALV along a road reliably, even in the presence of fluctuation of illumination condition, bad road surface condition such as hidden boundaries, shadows, road patches, dirt and water stains, and unusual road condition. Pyramid structure also saves time in processing road images and a real-time image processing for achieving navigation of ALV is implemented. The efficacy of this approach is demonstrated using several real-world road images.

  • PDF

A FUZZY NEURAL NETWORK-BASED DECISION OF ROAD IMAGE QUALITY FOR THE EXTRACTION OF LANE-RELATED INFORMATION

  • YI U. K.;LEE J. W.;BAEK K. R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions, and obtained successful decision-making about $99\%$ of the time.