• Title/Summary/Keyword: Road hazard

Search Result 148, Processing Time 0.024 seconds

Fire Endurance Estimate of Reinforced Concrete Structure Using Nonlinear Finite Element Method (비선형 유한요소해석을 이용한 철근콘크리트 구조물의 내화성능평가)

  • Byun, Sun-Joo;Im, Jung-Soon;Hwang, Jee-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.17-27
    • /
    • 2006
  • To estimate the retained strength of reinforced concrete structure after fire is very difficult because the complex behavior of structure is hard to understand during course of a fire. However, the damages which is caused by fire of the traffic facility infrastructure are enormous. Therefore the security against fire is important element that must not be overlooked. For this reason, an exact estimate method of the fire endurance is highly demanded. In this study, the validity of the nonlinear finite element method approach for the fire endurance of reinforced concrete structure is verified. The results of fire endurance estimate of underground road way by nonlinear finite element method approach are compared with those by ACI 216R-89.

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

DC Leakage Current Properties Analysis of the LED Lamps of Road and Landscape Lighting (LED 가로등 및 경관조명의 직류 누전 특성 분석)

  • Kim, Hyang-Kon;Kim, Dong-Woo;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.885-891
    • /
    • 2011
  • In this paper, we studied dc leakage current properties analysis of LED lamps of road and landscape lighting when leakage current appeared in dc power line. Generally, converter of LED lighting is divides to insulated type and non-insulated type according to components. When electric leakage happened in AC power line, earth leakage breaker(ELB) senses leakage current and interrupts electric circuit. In dc power source, We need experimental verification about dc electric leakage for electricity safety. In normal wiring conditions and in the water, in case of using insulated type of converter, dc leakage current did not occur. However, in case of using non-insulated type of converter, dc leakage current occurred and passed through into the ground. We found that there is a hazard of electric shock by dc leakage current. We expect that the results of these studies would be helpful for electrical safety of LED lamps for road and landscape lighting.

Prioritization of Potential Technology for Establishing a Safe Work Zone Environment (안전한 도로 공사구간 환경 구축에 필요한 기술의 우선순위 선정)

  • Kim, Jin Guk;Yang, Choong Heon;Yun, Duk Geun
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • PURPOSES : This study prioritizes potential technology for establishing a safe work zone environment on roadways. We consider almost all conceivable technologies that enable mitigation of unexpected accidents for both road workers and drivers. METHODS : This study suggests a methodology to set the priority of potential technology for establishing a safe work zone environment by using the analytical hierarchy process (AHP). For this purpose, the AHP structure was first developed. Thereafter, a web-based survey was conducted to collect experts' opinions. Based on the survey results, weights associated with the relevant criteria of the developed structure were estimated. With the consistency index (CI) and consistency ratio (CR), we verified the estimated weights. In addition, a sensitivity analysis was performed to confirm whether the estimated weights were reliable. We finally proposed the priority for potential technology for establishing a safe work zone environment on roadways. RESULTS : In the first level, safety technology has the highest priority, and real-time information delivery for work zone, hazard warning for drivers, and temporal automated operation for traffic facilities were selected in the second level of hierarchy. CONCLUSIONS : The results imply that establishing the priority will be useful to establish a future road map for improving the work environment for road workers and drivers by employing appropriate protection facilities and developing safety systems.

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE PARAMETERS FOR TWO-WAY STOP-CONTROLLED INTERSECTIONS (무신호 교차로의 안전 -서비스 수준 측정에 관한 연구-)

  • 이수범
    • Proceedings of the KOR-KST Conference
    • /
    • 1996.02a
    • /
    • pp.59-86
    • /
    • 1996
  • Current methods for evaluating unsignalized intersections, and estimating level-of-service (LOS) is determined from efficiency-based criteria such as little or no delay to very long delays. At present, similar procedures to evaluate intersections using safety-based criteria do not exist. The improvement of sight distances at intersections is the most effective way of improving intersection safety. However, a set of procedures is necessary to account for the limitations in current methodology. Such an approach would build upon such methods, but also account for: deficiencies in the current deterministic solution for the determination of intersection sight distances; opportunity for an accident and severity of an accident; and cost-effectiveness of attaining various levels of sight distances. In this research, a model that estimates the degree of safety at two-way stop-controlled intersections is described. Only crossing maneuvers are considered in this study because accidents caused by the crossing maneuvers are the dominate type among intersection accidents. Monte Carlo methods are used to estimate the hazard at an intersection as a function of roadway features and traffic conditions. Driver`s minimum gap acceptance in the crossing vehicles and headway distribution on the major road are used in the crossing vehicles and headway distribution on the major road are used in the model to simulate the real intersectional maneuvers. Other random variables addressed in the model are: traffic speeds; preception-reaction times of both drivers in the crossing vehicles and drivers in oncoming vehicles on the major road; and vehicles on the major roads. The developed model produces the total number of conflicts per year per vehicle and total potential kinetic energy per year per vehicle dissipated during conflicts as measurements of safety at intersections. Based on the results from the developed simulation model, desirable sight distances for various speeds were determined as 350 feet, 450 feet and 550 feet for 40 mph, 50 mph and 60 mph prevailing speed on the major road, respectively. These values are seven to eight percent less than those values recommended by AASHTO. A safety based level-of-service (LOS) is also developed using the results of the simulation model. When the total number of conflicts per vehicle is less than 0.05 at an intersection, the LOS of the intersection is `A' and when the total number of conflicts per vehicle is larger than 0.25 at an intersection, the LOS is `F'. Similarly, when the total hazard per vehicle is less than 350, 000 1b-ft2/sec2, the LOS is `F'. Once evaluation of the current safety at the intersection is complete, a sensitivity analysis can be done by changing one or more input parameters. This will estimate the benefit in terms of time and budget of hazard reduction based upon improving geometric and traffic characteristics at the intersection. This method will also enable traffic engineers in local governments to generate a priority list of intersection improvement projects.

  • PDF

A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster (도로터널내 화재 발생시 매연 제거를 위한 모델 해석)

  • 윤성욱;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

A Study on Measuring and Calibration Method using Time Domain Reflectometry Sensor under Road Pavement (Time Domain Reflectometry 방식을 이용한 도로 하부의 함수비 계측 및 보정 방안에 관한 연구)

  • Cho, Myung-Hwan;Lee, Yoon-Han;Kim, Nak-Seok;Park, Joo-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.23-30
    • /
    • 2010
  • The research presents moisture content measuring and calibration method of road pavement, especially asphalt concrete pavement for performance evaluation or remaining life prediction using Time Domain Reflectometry(TDR) sensor, CS616 made by campbell INC. Before calibration test of CS616, accomplished a sensor verification tests. Verification test items were covering depth and interference effect of two CS616 sensors, temperature effects between $5^{\circ}C\sim25^{\circ}C$ and compaction ratio effects. Covering depth and interference effects between two CS616 sensors were just small and the effects of temperature and compaction ratio effected a Volumetric Moisture Contents at $\pm6%$ under disregard appeared with the fact that was possible. Also, obtained the calibration equation of the subgrade and subbase course, $R^2$ showed above of all 0.9.

Prediction of Life Expectancy of Asphalt Road Pavement by Region (아스팔트 도로포장의 균열률에 대한 지역별 기대수명 추정)

  • Song, Hyun Yeop;Choi, Seung Hyun;Han, Dae Seok;Do, Myung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.417-428
    • /
    • 2021
  • Since future maintenance cost estimation of infrastructure involves uncertainty, it is important to make use of a failure prediction model. However, it is difficult for local governments to develop accurate failure prediction models applicable to infrastructure due to a lack of budget and expertise. Therefore, this study estimated the life expectancy of asphalt road pavement of national highways using the Bayesian Markov Mixture Hazard model. In addition, in order to accurately estimate life expectancy, environmental variables such as traffic volume, ESAL (Equivalent Single Axle Loads), SNP (Structural Number of Pavement), meteorological conditions, and de-icing material usage were applied to retain reliability of the estimation results. As a result, life expectancy was estimated from at least 13.09 to 19.61 years by region. By using this approach, it is expected that it will be possible to estimate future maintenance cost considering local failure characteristics.

Complex Disaster Risk Assessment of Local Road using a Landslide Hazard Map (산사태위험지도를 이용한 도로중심 복합재난 위험도 평가)

  • Kim, Min-Ho;Jang, Chang-Deok;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.31-40
    • /
    • 2022
  • Domestic disaster risk maps are mainly produced and studied as a single disaster map by grid unit and disaster type. In particular, it is necessary to present an evaluation method of the disaster risk map that is more suitable for the relevant facility (local road) in order to utilize the work of practitioners who are mainly in charge of facility maintenance. In this study, an evaluation method was presented to evaluate the risk with a focus on local roads by using the landslide risk map and debris flow risk map provided by the Korea Forest Service. In addition, the risk was evaluated and verified for the provinces located in Gangwon-do. As a result of the evaluation, it was possible to evaluate the risk of grades 1 to 5 for 1,513 evaluation sections in the evaluation section with a total length of 234.59 km.

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.