• Title/Summary/Keyword: Road hazard

Search Result 149, Processing Time 0.02 seconds

Techniques for Hazard Analysis of Curved Road Based on USN (굴곡 도로를 위한 USN 기반 위험 분석 기술)

  • Ko, Ik-June;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.17 no.1
    • /
    • pp.25-37
    • /
    • 2009
  • In this paper, we propose techniques for hazard analysis of curved road based on USN. The techniques consist of models and algorithms. Models of curved road, road direction, sensor, vehicle and hazard are proposed. To analyze hazard in curved road and give warning to corresponding vehicle in realtime multi-level algorithms are proposed. An application program implements the models and algorithms to simulate proposed techniques with real-time visualization.

  • PDF

Development of Hazard Prediction Map S/W for Mountain River Road (산지하천도로 재해지도 작성을 위한 SW 개발)

  • Jang, Dae Won;Yang, Dong Min;Kim, Ki Hong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.

  • PDF

Debris Flow Risk Evaluation and Ranking Method for Drainage Basin adjacent to Road (도로인근 유역의 토석류 위험평가 및 등급화 방안)

  • Kim, Kyung-Suk;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.279-290
    • /
    • 2010
  • Technical countermeasures against debris flow should be established upon the risk level of the target location. Risk of debris flow should consider the hazard imposed by debris flow and vulnerability of the facilities to debris flow. In this research, we have defined the target location for risk evaluation and suggested scoring method of hazard of debris flow and vulnerability of road to debris flow. By defining risk rank into 6 categories in terms of possibility of damage during rainfall and using the risk scores of 46 debris flow cases, we have suggested risk ranking matrix. The method can be used in ranking the drainage basin adjacent to road by simply determining the hazard with vulnerability score and can be used for planning the debris flow countermeasures.

  • PDF

Developing Road Hazard Estimation Algorithms Based on Dynamic and Static Data (동적·정적 자료 기반 도로위험도 산정 알고리즘 개발)

  • Yang, Choongheon;Kim, Jinguk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.55-66
    • /
    • 2020
  • This study developed four algorithms and their associated indices that can quantify and qualify road hazards along roadways. Initially, relevant raw data can be collected from commercial vehicles by camera and DTG. Well-processed data, such as potholes, road freezing, and fog, can be generated from the Integrated management system. Road hazard algorithms combine these data with road inventory data in the Data Sharing Platform. Depending on well-processed data, four different road hazard algorithms and their associated indices were developed. To test the algorithms, an experimental plan based on passive DTG attached in probe vehicles was performed at two different test locations. Selection of the test routes was based on historical data. Although there were limitations using random data for commercial vehicles, hazardous roadways sections, such as fog, road freezing, and potholes, were generated based on actual historical data. As a result, no algorithm error was found in the entire test. Because this study provides road hazard information according to a section, not a point, it can be practically helpful to road users as well as road agencies.

Hazard Map of Road Slope Using a Logistic Regression Model and GIS (Logistic 회귀모형과 GIS기법을 활용한 접도사면 붕괴확률위험도 제작)

  • Kang Ho-Yun;Kwak Young-Joo;Kang In-Joon;Jang Yong-Gu
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.339-344
    • /
    • 2006
  • Slope failures are happen to natural disastrous when they occur in mountainous areas adjoining highways in Korea. The accidents associated with slope failures have increased due to rapid urbanization of mountainous areas. Therefore, Regular maintenance is essential for all slope and conducted to maintain road safety as well as road function. In this study, we take priority of making a database of risk factor of the failure of a slope before assesment and analysis. The purpose of this paper is to recommend a standard of Slope Management Information Sheet(SMIS) like as Hazard Map. The next research, we suggest to pre-estimated model of a road slope using Logistic Regression Model.

  • PDF

Development of a Road Hazard Map Considering Meteorological Factors (기상인자를 고려한 도로 위험지도 개발)

  • Kim, Hyung Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.133-144
    • /
    • 2017
  • Recently, weather information is getting closer to our real life, and it is a very important factor especially in the transportation field. Although the damage caused by the abnormal climate changes around the world has been gradually increased and the correlation between the road risk and the possibility of traffic accidents is very high, the domestic research has been performed at the level of basic research. The Purpose of this study is to develop a risk map for the road hazard forecasting service of weather situation by linking real - time weather information and traffic information based on accident analysis data by weather factors. So, we have developed a collection and analysis about related data, processing, applying prediction models in various weather conditions and a method to provide the road hazard map for national highways and provincial roads on a web map. As a result, the road hazard map proposed in this study can be expected to be useful for road managers and users through online and mobile services in the future. In addition, information that can support safe autonomous driving by continuously archiving and providing a risk map database so as to anticipate and preemptively prepare for the risk due to meteorological factors in the autonomous driving vehicle, which is a key factor of the 4th Industrial Revolution, and this map can be expected to be fully utilized.

A Study on Selection of Bicycle Road Hazard Detection Elements For Mobile IoT Sensor Device Operation (이동형 IoT 센서 장비 운용을 위한 자전거도로 위험 감지요소 선정 연구)

  • Woochul Choi;Bong-Joo Jang;Sun-Kyum Kim;Intaek Jung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.37-53
    • /
    • 2024
  • This study selected bicycle road hazard detection factors for mobile IoT sensor device operation and developed service application plans. Twelve bicycle road hazard detection factors were derived through a focused group interview, and a fuzzy AHP-based importance analysis was conducted on 30 road and transportation experts. As a result, 'damage to pavement' (1st overall) and 'environmental obstacle' (2nd) with low visibility but a high risk of accidents were selected the most. The factors in terms of facility management, such as 'disconnected route occurrence' (4th), 'artificial obstacle' (5th), 'effective width' (6th), and 'poor drainage' (7th), were selected as the upper and middle areas. Factors that are not direct accident-inducing factors, such as 'loss of road markings' (11th) and 'free space width' (12th), were selected the least. Based on this, a plan was presented to apply the bicycle road hazard detection service and a service operation strategy according to real-time performance. Nevertheless, follow-up studies, such as human behavioral analysis based on bicycle operators, analysis according to the bicycle road type, service demonstration, and pilot operation, will be needed to develop safe bicycle road management is expected.

A Study on the Model for Classification of Safety in the Curved Section of Road (도로 곡선부의 안전 등급화 모형에 관한 연구)

  • Kim, Gyeong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.23-29
    • /
    • 2008
  • This research proposes two sub-models and one integrated model for the classification of safety in curve section of road, where the fatal-rate is relatively higher in accidents. The first sub-model calculates the accident-rate by safety-index that is based on the road geometries. The second decides the safety of curve section by the speed difference between before and in the curve. Finally, the integrated model of two sub-modules can classify the safety of curve section of road.

Integration and Decision Algorithm for Location-Based Road Hazardous Data Collected by Probe Vehicles (프로브 수집 위치기반 도로위험정보 통합 및 판단 알고리즘)

  • Chae, Chandle;Sim, HyeonJeong;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.173-184
    • /
    • 2018
  • As the portable traffic information collection system using probe vehicles spreads, it is becoming possible to collect road hazard information such as portholes, falling objects, and road surface freezing using in-vehicle sensors in addition to existing traffic information. In this study, we developed a integration and decision algorithm that integrates time and space in real time when multiple probe vehicles detect events such as road hazard information based on GPS coordinates. The core function of the algorithm is to determine whether the road hazard information generated at a specific point is the same point from the result of detecting multiple GPS probes with different GPS coordinates, Generating the data, (3) continuously determining whether the generated event data is valid, and (4) ending the event when the road hazard situation ends. For this purpose, the road risk information collected by the probe vehicle was processed in real time to achieve the conditional probability, and the validity of the event was verified by continuously updating the road risk information collected by the probe vehicle. It is considered that the developed hybrid processing algorithm can be applied to probe-based traffic information collection and event information processing such as C-ITS and autonomous driving car in the future.