• 제목/요약/키워드: Road friction force

검색결과 36건 처리시간 0.029초

4WD 차량의 후륜 구동력 제어를 위한 구동시 노면마찰계수 추정에 관한 연구 (A Study of Tire Road Friction Estimation for Controlling Rear Wheel Driving Force of 4WD Vehicle)

  • 박재영;심우진;허승진
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.512-519
    • /
    • 2016
  • In this study, the tire road friction estimation(TRFE) algorithm for controlling the rear wheel driving force of a 4WD vehicle during acceleration is developed using a standard sensor in an ordinary 4WD passenger car and a speed sensor. The algorithm is constructed for the wheel shaft torque, longitudinal tire force, vertical tire force and maximum tire road friction estimation. The estimation results of shaft torque and tire force were validated using a torque sensor and wheel force transducer. In the algorithm, the current road friction is defined as the proportion calculated between longitudinal and vertical tire force. Slip slop methods using current road friction and slip ratio are applied to estimate the road friction coefficient. Based on this study's results, the traction performance, fuel consumption and drive shaft strength performance of a 4WD vehicle are improved by applying the tire road friction estimation algorithm.

타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어 (ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre)

  • 김정식
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.

휠 슬립 제어를 위한 타이어와 노면 사이의 타이어 제동력 및 노면 마찰계수 추정 (Estimation of Tire Braking Force and Road Friction Coefficient Between Tire and Road Surface For Wheel Slip Control)

  • 홍대건;허건수;윤팔주;황인용
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.517-523
    • /
    • 2004
  • Recently, wheel slip controllers with controlling the wheel slip directly has been studied using the brake-by-wire actuator. The wheel slip controller is able to control the braking force more accurately and can be adapted to various different vehicles more easily than the conventional ABS systems. The wheel slip controller requires the information about the tire braking force and road condition in order to achieve the control performance. In this paper, the tire braking forces are estimated considering the variation of the friction between brake pad and disk due to aging of the brake, moisture on the contact area or heating. In addition, the road friction coefficient is estimated without using tire models. The estimated performance of tire braking forces and the road friction coefficient is evaluated in simulations.

고무 블록의 마찰 거동 해석 (Analysis of the Frictional Behavior of Rubber Block)

  • 김두만;유현승
    • 한국항공운항학회지
    • /
    • 제14권3호
    • /
    • pp.16-22
    • /
    • 2006
  • The friction and wear of tire determined by frictional behavior of tire tread that translate driving force, cornering force and braking force between automobile and road as a result of frictional behavior of each tread block. The tire tread block is representative case of rubber block doing frictional behavior. In this paper, frictional behavior of rubber block under compressive force and shear force was analytically obtained by using slip starting position parameter instead of friction coefficient which is uncertain to express exact value between rubber and other surfaces yet. And local coefficients of friction were calculated as a function of compressive force, shear force, shear modulus of rubber, shape factor and slip starting position.

  • PDF

A Study of Slip Ratio Control of 3 Port -2 Position Solenoid Valve using PWM Control

  • Kim, Jung-Hwan;Choi, Jong-Hwan;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.170.3-170
    • /
    • 2001
  • Antilock brake system(ABS) prevent the wheels of road vehicle from locking up and skidding so that the braking force is from static friction instead of kinetic friction. Therefore ABS helps drivers maintain steering control during breaking situation particularly at an emergency stopping situation. So when trying to stop the road vehicle it is best to have the most friction possible for faster deceleration ABS keep the wheels turning which means there is more friction between the tires of vehicles and the road surface. Because of this advantage, ABS are now a commonly installed feature for passenger's safety in road vehicles. In this study, hydraulic system of ABS of vehicle is composed of 3port-2position solenoid valve. In order to minimize ...

  • PDF

Evaluation of the Friction Coefficient from the Dynamometer Test of the Aircraft

  • Woo, Gui-Aee;Jeon, Jeong-Woo;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.548-552
    • /
    • 2003
  • In the braking system, the friction force is the most important factor of the design. For long time, many researchers have been strived for getting the exact friction coefficients. But the friction coefficients are affected by the road condition and changed by lots of parameters, such as normal force and characteristics between two contacted materials, temperature, etc. For the development of ABS of the aircraft, HILS(Hardware-In-the-Loop-Simulation) test and dynamometer test was carried out. For the calculation of the friction coefficients, the wheel moments were measured using the load cell mounted on the housing of the wheel. The test conditions were dry and greasy, as the 0.7 and 0.4 in friction coefficient, respectively. In this paper, the test results of the friction coefficients were represented and the improvement method was suggested.

  • PDF

실차 데이터를 이용한 차륜과 노면간의 마찰계수 예측에 관한 연구 (A Study on the Estimation of Frictiom Coefficient between Tire and Road Surface Using Running Car data)

  • 우관제;산기준일
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.207-213
    • /
    • 1999
  • In this study, the possibility of estimation of friction coefficient between tire and road surface using running car data are checked. To get necessary data, such as tire and car velocities and braking force, a test car is driven with certain magnitude of decelerations from pre-set initial velocities to stop . The data are used to estimate friction coefficient with property chosen parameters , e.g,, driving stiffness, pressure distribution functions, etc. Experimental results show that running data car be used with properly chosen parameters to estimate friction coefficient.

  • PDF

TIRE MESH 모델을 활용한 랙추력 추정법 개발 (Rack Force Estimation Method using a Tire Mesh Model)

  • 김민준;장세현;이병림;박영대;조현석
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2014
  • In this paper, a new estimation method is proposed to calculate steering rack axial force using a 3 dimensional tire mesh model when a car is standing on the road. This model is established by considering changes of camber angle and contact patch between the tires and the ground according to steering angle. The steering rack bar axial force is estimated based on the static equilibrium equations of forces and moments. A tire friction force is supposed to act on the center point of the contact patch, and the proportional coefficient of friction depending on contact patch is suggested. Using the proposed estimation method, rack axial force sensitivity analysis is evaluated according to changes of suspension geometry. Then optimal motor power of Motor Driven Power Steering(MDPS) is evaluated using suggested rack forces.

도로터널 환기시스템 개발연구 (Development of Vehicle Tunnel Ventilation System)

  • 이창우
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

현장시험을 통한 기초 말뚝 부마찰력의 특성과 시공관리 (Characteristics of Negative Skin Friction of Foundation Pile and Construction Management by Experimental Field Test)

  • 홍석우
    • 한국도로학회논문집
    • /
    • 제14권3호
    • /
    • pp.41-48
    • /
    • 2012
  • 본 연구에서는 교량기초 말뚝의 부주면마찰력 시험을 통하여 연약지반에 타설된 강관말뚝의 부주면마찰력을 측정하였으며 장기적인 마찰응력의 관측시험을 통하여 경제적인 상부구조물 시공시기를 판단하였다. 본 연구의 결론은 다음과 같다. (1) 연약지반에서 부마착력의 크기는 침하속도가 클수록 크게 나타났다. (2) 마찰력의 관계 그래프에서 마찰응력의 증감이 없는 시기를 확인하여 상부구조물 시공시기를 판단할 수 있었다. (3) 말뚝정재하시험결과와 부주면마찰력 시험결과를 비교해 본 결과 항타 직후의 부주면마찰력은 재하시험 시의 마찰응력보다 크게 나오는 것으로 판단되며 15일 경과후의 측정값은 비슷하게 나오는 것으로 판단되었고, 이론식에 의한 결과와도 비슷하였다. (4) 부주면마찰력의 장기관측기법을 사용하면 부주면마찰력이 발생하고 있는 중이라도 적절한 상부구조물의 시공시기를 파악할 수 있어 경제적인 시공관리가 가능한 것으로 판단된다.