• 제목/요약/키워드: Road embankment

검색결과 85건 처리시간 0.031초

제방겸용도로 건설에 따른 제방 안정성 해석에 관한 연구 (A Study on the Stability of Embankment Due to the Construction of Embankment Combined Use Road)

  • 김성남;이영우
    • 한국도로학회논문집
    • /
    • 제10권3호
    • /
    • pp.109-118
    • /
    • 2008
  • 본 연구에서는 현재 실존하는 제방을 대상으로 제방겸용도로 건설에 따른 안정성의 변화를 살펴보기 위해 건설단계별로 도로건설을 위한 성토 후, 겸용도로 건설 후 도로를 주행하는 차량에 의한 교통하중이 재하될 경우로 구분하여 안정성 변화를 분석하였다. 연구결과 겸용도로 건설을 위한 성토 후와 교통하중(DB-24)을 적용하였을 경우 모두 일반적인 안전율 기준인 1.3을 상회하고 있어 겸용도로 건설에 따른 제방의 안전은 확보되는 것으로 분석되어 제방겸용도로의 건설은 부지 확보 비용 절감을 위해 건설이 가능할 것으로 판단된다. 그러나 겸용도로의 건설로 인해 제방의 안전율 감소 현상이 발생하기 때문에 안정성에 대한 사전 검토가 충분히 이루어져야 할 것이다. 특히 안전율 감소가 가장 큰 경우는 비정상류 상태의 수위상승의 경우로 분석되어 하천제방과 같이 수위변화가 빈번한 경우에는 비정상류 해석으로 설계하는 것이 바람직하며 제내지의 사면경사는 기존제방과 동일한 1:2의 경사를 유지하도록 설계하는 것이 필요할 것으로 판단된다. 또한, 교통하중에 의한 안전율 감소현상도 발생하는 것으로 분석되어 겸용도로 건설 후 주행차량의 하중제한 등 유지 관리에도 지속적인 관심을 기울여야 할 것으로 판단된다.

  • PDF

해안 도로상의 EPS 하중경감공법의 해석 (Applications of the Light Weight Method of EPS to Sub-road Fills at the Seaside)

  • 장용채
    • 한국항만학회지
    • /
    • 제14권2호
    • /
    • pp.233-239
    • /
    • 2000
  • The expansion of old road is needed in constructing the entrance at the $\bigcirc$$\bigcirc$I/C road in $\bigcirc$$\bigcirc$city. To strength the national competition, many agents who concerned do their best for finishing that construction early as soon as possible. In generally, soil embankment on soft foundation is caused to reduce the stability by making the settlement of ground surface due to the over load. Thus, we try to make it stable by building EPS embankment construction which in our working place is one kind of the method of light embankment construction after excavating the original ground.

  • PDF

해안 매립지역의 EPS 성토공법 적용 (Applications of the EPS Embankment Metod to Earth Fils at the Seaside)

  • 장용채;조성민;이유옥
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.219-224
    • /
    • 1999
  • The expansion of old road is needed in construction the entrance at the $\bigcirc$$\bigcirc$I/C road in $\bigcirc$$\bigcirc$city. To strength the national competition, many agents who concerned do their best for finishing that construction early as soon as possible. In generally, soil embankment on soft foundation is caused to reduce the stability by making the settlement of ground surface due to the over load. Thus, we try to make it stable by building EPS embankment construction which in our working place is one kind of the method of light embankment construction after excavating the original ground.

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei;Shouxi Chai;Pei Wang
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.499-510
    • /
    • 2024
  • In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석 (Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment)

  • 배우석;김종우;권영철
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

도로성토사면의 안정성 분석시 원지반 투수성의 영향 (Permeability Influence of Base Soil for Analysis of Road Landfill Stability)

  • 김영묵;김충기;김만구;김건해
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.890-897
    • /
    • 2005
  • Stability of embankment is influenced on landfill condition, permeability, shear strength and soil engineering propensity and so on, and need examination in reply because is different according to change of soil property of foundation ground and permeability condition. Analyzed seepage behaviour by finite element method for embankment, and change permeability of base to analyze effect that permeability of ground water table formation before embankment and analyze seepage behaviour to typical embankment in this research. In the case of permeability of foundation ground is 10 more than landfill permeability, rise of groundwater table was changed slightly. Pore water pressure was decreased slowly in landfill after rainfall. The effect of permeability of foundation ground was effected in change of pore water pressure. For permeability of foundation ground is 10 more than landfill, stability of road landfill was small changed during rainfall. But in the case of permeability of base soil similar to landfill permeability, road landfill stability was large decreased during rainfall.

  • PDF

고성토 도로의 건설이 미기후 환경에 미치는 영향에 관한 연구 (A Study on the Effects of High Embankment Road on the Microclimatic Environment)

  • 임익현;황의진;류지협
    • 한국재난관리표준학회지
    • /
    • 제4권1호
    • /
    • pp.29-37
    • /
    • 2011
  • 최근 고성토 도로건설 구간에서 거주민들이 고성토 도로가 생활환경에 영향과 경제적인 피해를 최소화 해 줄 것을 요구하는 민원이 급격하게 증가하는 실정이다. 본 연구에서는 고성토 도로와 교량이 건설되는 도로구간을 연구 대상지역으로 선정하고, 3차원 미기후모델 'Envi-met'을 이용하여 도로의 건설 전과 후에 온도장과 바람장의 변화에 대한 수치해석을 수행하였다. 그 결과를 요약하면 다음과 같다. 바람장의 분석 결과, 고성토 구간의 도로가 기류의 흐름 방해하여 바람장의 급격한 변화를 나타내었으며, 대부분 분석공간에서 풍속의 감소를 나타내었다. 그러나 교량 구간의 도로는 풍향에 미치는 영향이 크지 않았고, 풍속의 감소에 미치는 영향도 상대적으로 낮게 나타났다. 온도장의 분석 결과, 고성토 도로가 기류의 유동과 혼합을 방해하여 분석공간의 내부에서 미세한 온도의 변화가 나타났다. 이러한 결과는 도로건설 사업에서 수치모사의 이용이 미기후 변화와 교통사고 등과 같은 재난 가능성을 최소화하는데 필요한 유용한 정보를 제공할 수 있음을 나타내었다.

  • PDF

Stabilization of Lateritic Soil with Eggshell Powder

  • Ndagijima, Jacques;Kim, Kanghyun;Kim, Seunghyun;Shin, Jongho
    • 한국지반환경공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.5-13
    • /
    • 2022
  • In tropical regions, lateritic soil is frequently used in road embankment. However, it is one of the sources of road failure owing to its low strength. Generally, cement and lime are used as stabilizers for lateritic soil, but they are not environmentally friendly. Some studies try to use eggshells, for they are food waste and share the same chemical composition as lime. Previous researchs have shown that eggshell powder could enhance the strength of lateritic soil. This research investigated the effect of particle size of the eggshell powder and the effect of the protein-membrane presence in the eggshell on stabilizing capacity of soil. Through laboratory tests, unconfined compressive strength was examined for various particle sizes. The particle size of eggshell powder ranging between 150 ㎛ and 88 ㎛ was appropriate size that made an excellent stabilizer at 3% concentration. On the other hand, the protein-membrane reduced the stabilizing ability of the eggshell powder when the content of eggshell powder is less than 4% in soil. Numerical analysis of road embankment was performed based on the results obtained in the laboratory tests. It is shown that the eggshell powder has improved the stability of the sub-base of the road embankment.

성토사면에 타설된 현장 콘크리트 말뚝의 강도특성에 미치는 성토재료 및 타설 방법에 대한 영향 (Effect of Strength Properties of In-Situ Concrete Pile in Embankment Slopes on Embankment Materials and Boring Methods)

  • 황무석;정재훈;박승기;이창수;박찬기
    • 한국농공학회논문집
    • /
    • 제50권5호
    • /
    • pp.73-81
    • /
    • 2008
  • This study evaluated the applicability of in-situ concrete pile as a stabilization materials of embankment slopes including agricultural reservoir and rural road etc. The experimental embankment slopes was constructed to investigate the strength properties of in-situ concrete pile with embankment materials and boring methods. The test variable were applied the boring method(driving and augering) and water-cement ratio. In order to analyze the physical and mechanical properties of embankment materials, permeability and water contents test were was performed. Also, the freshly and harden of in-situ concrete properties were measured by the slump and compressive strength tests. The results showed the water content and permeability of embankment materials and boring methods affected on compressive strength of in-situ concrete pile.

Application of waste rubber to reduce the settlement of road embankment

  • Tafreshi, S.N. Moghaddas;Norouzi, A.H.
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.219-241
    • /
    • 2015
  • In this paper, a series of repeated load tests were carried out on a 150 mm diameter plate simulative of vehicle passes, to demonstrate the benefits of soil-rubber shred mixture in decreasing the soil surface settlement of road embankment. The results show that the efficiency of rubber reinforcement is significantly a function of the rubber content, thickness of rubber-soil mixture and soil cap thickness over the mixture. Minimum surface settlement is provided by 2.5% of rubber in rubber-soil mixture, the thickness of mixture layer and soil cap of 0.5 times the loading surface diameter, giving values of 0.32-0.68 times those obtained in the unreinforced system for low and high values of amplitude of repeated load. In this installation, in contrast with unreinforced bed that shows unstable response, the rate of enhancement in settlement decreases significantly as the number of loading cycles increase and system behaves resiliently without undergoing plastic deformation. The findings encourage the use of rubber shreds obtained from non-reusable tires as a viable material in road works.