• Title/Summary/Keyword: Road Vehicle

Search Result 2,500, Processing Time 0.025 seconds

Track Tension Monitoring in the Longitudinal Traveling of Tracked Vehicles (궤도차량의 직진주행시 궤도장력 감지)

  • Heo, Geon-Su;Jo, Byeong-Hui;Seo, Mun-Seok;Seo, Il-Seong;Park, Dong-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1608-1615
    • /
    • 2000
  • The track tension is closely related to the maneuverability of tracked vehicles and the durability of tracks and suspension systems. In order to minimize the excessive load on the tracks and to pre vent the peal-off of tracks from the road wheels, it is required to maintain the optimum track tension throughout the maneuver. However, the track tension cannot be easily measured due to the limitation in the sensor technology, harsh environment, etc. In this paper an indirect track tension monitoring system is developed based on idler assembly models, a geometric relation around the idler, and the tractive force estimated by using the Extended Kalman Filter. The performance of the tension monitoring system is verified with the results obtained from the Multi-Body Dynamics model.

Estimation of Vibration Level Inside an Engine Based on Rigid Body Theory and Measurement Technology (강체 운동 해석 및 실험을 통한 엔진 내부 진동 예측에 관한 연구)

  • Kim, Byung-Hyun;Park, Jong-Ho;Kim, Eui-Yeol;Lee, Sang-Kwon;Kim, Tae-Jeong;Heo, Jeong-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1043-1050
    • /
    • 2011
  • This paper presents practical results for the estimation of vibration level inside a powertrain based on the rigid body theory and measurement. The vibration level of inside powertrain has been used for the calculation of excitation force of an engine indirectly. However it was difficult to estimate or measure the vibration level inside of a powertrain when a powertrain works on the driving condition of a vehicle. To do this work, the rigid body theory is employed. At the first, the vibration on the surface of a powertrain is measured and its results are secondly used for the estimation the vibration level inside of powertrain together with rigid body theory. Also did research on how to decrease the error rate when the rigid body theory is applied. This method is successfully applied to the estimation of the vibration level on arbitrary point of powertrain on the driving condition at the road.

Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston (피스톤 바이패스 유로가 있는 MR 댐퍼 장착 1/4 차량 현가시스템의 성능평가)

  • Kim, Wan Ho;Hwang, Yong Hoon;Park, Jhin Ha;Shin, Cheol-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.65-71
    • /
    • 2017
  • This work presents a comparative work on the ride comfort of a quarter car suspension system between two different magneto-rheological (MR) dampers; one is conventional type without bypass hole and the other is featured by several bypass holes in the piston. As a first step, two different MR dampers are designed on the basis of the governing equation and manufactured with same geometric dimensions except the bypass holes. After investigating the field-dependent damping properties, two dampers are installed to the quarter car suspension system. The suspension model is then derived and a sky-hook controller is implemented to identify vibration control performance under random road. It is shown that the suspension system with MR damper featured by the bypass holes can provide much better ride quality than the case without the bypass holes. This is validated via experimental implementation.

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.

An Efficient Window Sliding Method for On-road Vehicle License Plate Detection (도로 상 차량 번호판 검출을 위한 효율적인 윈도우 슬라이딩 기법)

  • Mo, Hong-Chul;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.450-453
    • /
    • 2011
  • 고화질의 디지털 카메라 및 스마트폰, 감시용 카메라의 보급 등으로 인해 최근 패턴 인식 및 이미지 프로세싱 분야에서 고화질의 이미지 및 비디오를 처리해야 하는 경우가 많아지고 있다. 특히 차량 번호판 감지 등과 같은 객체 인식 분야의 경우, 고화질의 이미지로 인해 그만큼 인식에 필요한 계산 비용이 증가하게 되었는데 따라서 이러한 계산 비용을 효율적으로 줄이기 위한 기법이 요구되고 있다. 또한 기존의 차량 번호판 감지의 도메인과는 다르게 도로 상에서의 실시간 차량 번호판 감지의 필요성이 대두되고 있기에 본 논문에서는 도로 상에서의 실시간 번호판 감지 시스템을 위한 차량 번호판 주변정보 기반의 효율적인 윈도우 슬라이딩(window sliding) 방법을 제안한다. 본 논문의 시스템은 총 3단계로, (1) SVM(Supported Vector Machine) 을 통한 차량 번호판 주위 정보에 대한 학습, (2) 도로 상의 번호판 위치 확률 모델링을 통한 탐색 공간의 감소, (3) $context_{plate}$분류기를 통한 OCS(operator context scanning)의 수행이다. 이와 같은 $context_{plate}$분류기와 OCS를 통해 번호판 검출을 위한 윈도우 슬라이딩의 수가 크게 줄었음을 알 수 있었으며, 또한 번호판의 정보를 건너뛰지 않고, 신뢰성 있게 접근함을 알 수 있었다.

A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel (용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구)

  • Noh, Myung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles (자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정)

  • Kim, Jeong;Jang, Young-Kee;Choi, Sang-Jin;Kim, Jeong-Soo;Seo, Choong-Yeol;Son, Ji-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.

Impact Variables of Dump Truck Cycle Time for Heavy Excavation Construction Projects

  • Song, Siyuan;Marks, Eric;Pradhananga, Nipesh
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.2
    • /
    • pp.11-18
    • /
    • 2017
  • The cycle time of construction equipment for earthwork operations has a significant impact on project productivity. Elements that directly impact a haul vehicle's cycle time must be identified in order to accurately quantify the haul cycle time and implement strategies to decrease it. The objective of this research is to scientifically identify and quantify variables that have a significant impact on the cycle time of a dump truck used for earthwork. Real-time location data collected by GPS devices deployed in an active earthwork moving construction site was analyzed using statistical regression. External data including environmental components and haul road conditions were also collected periodically throughout the study duration. Several statistical analyses including a variance analysis and regression analysis were completed on the dump truck location data. Collected data was categorized by stage of the dump truck cycle. Results indicate that a dump truck's enter idle time, exit idle time, moving speed and driver visibility can significantly impact the dump truck cycle time. The contribution of this research is the identification and analysis of statistically significant correlations of variables within the cycle time.

Accuracy Comparison of Direct Georeferencing and Indirect Georeferencing in the Mobile Mapping System

  • Bae Sang-Keun;Kim Byung-Guk;Sung Jung-Gon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.656-660
    • /
    • 2004
  • The Mobile Mapping System is an effective method to acquire the position and image data using vehicle equipped with the GPS (Global Positioning System), IMU (Inertial Measurement Unit), and CCD camera. It is used in various fields of road facility management, map update, and etc. In the general photogrammetry such as aerial photogrammetry, GCP (Ground Control Point)s are needed to compute the image exterior orientation elements (the position and attitude of camera). These points are measured by field survey at the time of data acquisition. But it costs much time and money. Moreover, it is not possible to make sufficient GCP as much as we want. However Mobile Mapping System is more efficient both in time and money because it can obtain the position and attitude of camera at the time of photographing. That is, Indirect Georeferencing must use GCP to compute the image exterior orientation elements, but on the other hand Direct Georeferencing can directly compute the image exterior orientation elements by GPS/INS. In this paper, we analyze about the positional accuracy comparison of ground point using the Direct Georeferencing and Indirect Georeferencing.

  • PDF

Road detection using vehicle-mounted rotary laser scanner (차량에 부착된 회전식 레이저 스캐너 데이터를 이용한 도로면 추출기법)

  • Rhee, Soo-Ahm;Kim, Tae-Jung;Jeong, Dong-Hoon;Yun, Duk-Keun;Sung, Jung-Gon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.105-108
    • /
    • 2007
  • 차량에 부착된 회전식 레이저 스캐너는 360도로 회전하면서 데이터를 취득하기 때문에 고정식 레이저 스캐너에 비해 더 광범위하고 정확한 3차원 데이터를 획득하고 생성할 수 있다. 그러나 레이저 데이터 자료는 표적까지의 거리와 취득 당시의 스캐너의 각도로만 구성되어있기 때문에 이를 사용하기 위해서 이 데이터들을 일련의 좌표변환과정을 거쳐서 3차원 직교좌표계로 변환시킨다. 이 논문의 목적은 회전식 레이저에서 획득된 데이터를 DEM화하고,DEM영상의 밝기값, 즉 높이값을 이용하여 도로변을 주위의 사물과 분리하여 추출하는 것에 있다. 도로면은 일반적으로 주위의 사물에 비해 그 높이가 낮고 고르게 분포되어 있다고 가정한다. 그렇기 때문에 이 도로면의 높이를 대표할 수 있는 적절한 임계값을 찾을 수 있다면 도로면의 분리 또한 가능하다. 도로면의 추출을 위해 제안된 방법은 취득된 레이저 데이터를 일정 간격의 높이로 나누고 그에 대한 히스토그램을 구한 후, 가장 많은 빈도수를 나타낸 지역의 값을 염계치로 설정하는 방법과,레이저 스캐너가 지표면을 향할 때의 각도,즉 270도 일 때 취득된 거리의 값들을 수집한 후, 그 평균값을 임계치로 설정하는 방법이다. 이렇게 구해진 임계치를 이용 그 값보다 작은 지역을 도로로 인식하였으며,실험 결과 레이저 스캐너의 각도를 이용한 방법이 더욱 효과적으로 도로를 추출할 수 있음을 확인할 수 있었다.

  • PDF