• Title/Summary/Keyword: Road Traffic Flows

Search Result 54, Processing Time 0.024 seconds

A Study on Roundabout Signal Metering Operation by Considering Entry Lane's Traffic Volume (진입교통량을 고려한 회전교차로 Signal Metering 운영에 관한 연구)

  • Ahn, Woo-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-181
    • /
    • 2012
  • Under unsaturated capacity conditions with balanced approach flows, roundabout gives less delay and queue length than existing signalized intersections; however, over capacity conditions with unbalanced approach flows(flow above 450 pcu/h/lane), roundabouts efficiency drops due to the short gap between entering vehicles and circulating vehicles. This study provides a roundabout Signal Metering transfer standard and operation method. In this study, a four-way-approach with one-lane roundabout is selected to compare the Signal Metering performance for the case of unbalanced flow conditions. The performance is evaluated by using SIDRA software in terms of average delay and queue length. The result shows that the Signal Metering provides substantial improvements for the case of total approach flow is 1,800~2,000 pcu/h in which the main approach flow ratio is 60~70% gives 30~40% less delay and 30~60% less queue length than normal roundabout operation. Also, it is approved that operational performance saving can be achieved when the Metered Approach is selected adjoining to the main approach in pair.

Novel online routing algorithms for smart people-parcel taxi sharing services

  • Van, Son Nguyen;Hong, Nhan Vu Thi;Quang, Dung Pham;Xuan, Hoai Nguyen;Babaki, Behrouz;Dries, Anton
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.220-231
    • /
    • 2022
  • Building smart transportation services in urban cities has become a worldwide problem owing to the rapidly increasing global population and the development of Internet-of-Things applications. Traffic congestion and environmental concerns can be alleviated by sharing mobility, which reduces the number of vehicles on the road network. The taxi-parcel sharing problem has been considered as an efficient planning model for people and goods flows. In this paper, we enhance the functionality of a current people-parcel taxi sharing model. The adapted model analyzes the historical request data and predicts the current service demands. We then propose two novel online routing algorithms that construct optimal routes in real-time. The objectives are to maximize (as far as possible) both the parcel delivery requests and ride requests while minimizing the idle time and travel distance of the taxis. The proposed online routing algorithms are evaluated on instances adapted from real Cabspotting datasets. After implementing our routing algorithms, the total idle travel distance per day was 9.64% to 12.76% lower than that of the existing taxi-parcel sharing method. Our online routing algorithms can be incorporated into an efficient smart shared taxi system.

Analysis of Intercepted Flow according to Change of Flow Width in Gutter (도로 흐름폭 변화에 따른 차집유량 분석)

  • Joo, Dong Won;Kim, Jung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • In dense cities, which are covered by many impermeable areas, rainwater flows quickly along the roads and collects in certain areas. The surface runoff that fails to get intercepted by the roadside rain gutters results in a wider flow of water along the sides, which in turn increases the amount of water on the road and causes traffic congestion as well as accidents due to slippage. Based on these issues, this study was carried out in order to propose an intercepted flow calculation formula. To this end, the maximum longitudinal slopes of arterial roads and expressways were reflected to depict a road condition of 2~10 %, while a general traverse slope of 2 % was selected for the traverse slope on the side. As for the road lane condition, two, three, and four lanes were chosen for the area from the centerline to the sidewalk. As for the experimental flow rate, the rainwater runoffs at the actual design frequency of 5, 10, 20, and 30 years for road conditions were converted into experimental flow rates, and as a result, flow rates ranging from 1.36 l/s to 3.96 l/s were divided into ten flow rates for a hydraulic experiment. Also, an equation taking into consideration the inflow velocity and flow width along the roadsides was proposed. The results of the experiment showed an increase in flow width and a decrease in interception rate. Also, the inflow velocity at a traverse slope of 2 % was measured, while increasing the longitudinal slope. Accordingly, an equation for calculating the flow intercepted by rain gutters at a flow width reflecting the longitudinal slope of the road and rainwater runoff, according to the design frequency, was derived by performing a regression analysis using IBM SPSS Statistics 24. It is deemed that the equation derived in this study will be useful in designing rain gutters for roads.

Effect of Guidance Information Receiving Ratio on Driver's Route Choice Behavior and Learming Process (교통정보 수신율 변화에 따른 운전자의 경로선택과 학습과정)

  • Do, Myung-Sik;Sheok, Chong-Soo;Chae, Jeung-Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.111-122
    • /
    • 2004
  • The driver's decision making (e.g. route choice) is a typical decision making with an uncertainty. In this paper, we investigate the effect of route guidance information on driver's route choice and learning behavior and analyse the potential of information system in a road network in which traffic flows follow random walk. A Simulation performed focuses on the relationship among the network wide performance, message receiving rates and driver's learning mechanism. We know that at high levels of message receiving rates, the network-wide performance may get worse. However, at low levels of receiving rates, we found that the travel time when guidance information is provided decrease compared to the cases when no pubic information is provided. Also, we found that the learning parameter of the learning mechanism model always changes under nonstationary traffic condition. In addition, learning process of drivers does not converge on any specific value. More investigation is needed to enlarge the scope of the study and to explore more deeply driver's behavior.

ALLOCATION AND PRICING IN PUBLIC TRANSPORTATION AND THE FREE RIDER THEOREM

  • Beckmann, Martin J.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.3 no.1
    • /
    • pp.31-46
    • /
    • 1978
  • Consider a time interval during which the demand for trips is fixed (e.g. the rush hour period). The traveller has a choice between various public modes, whose travel times and fares are fixed, and the automobile mode, for which travel time and cost depend on the volume of traffic flow on those roads, which are subject to congestion. We consider the equilibrium in terms of a representative travellerm, who choses for any trip the mode and route with the least combined money and time cost. When several (parallel) model or routes are chosen, then the combined cost of money and time must be equal among these. Our problem is first, to find the optimal flows of cars and of public mode carriers on the various links of their networks and second the optimal fares for trips by the variousmodes. The object is to minimize the total operating costs of the carriers and car plus the total time costs to travellers. The optimal fares are related to, but not identical with the dual variables of the underlying Nonlinear Program. They are equal to these dual variables only in the case, when congestion tolls on trips or on the use of specific roads are collected from automobile users. When such tolls are not collected, they must be passed on as subsidies to travellers using competing modes. The optimal fares of public modes are then reduced by the amounts of these subsidies. Note that subsidies are not a flat payment to public carriers, but are calculated on the basis of tickets sold. Fares and subsidies depend in general on tile period considered. They will be higher during periods of higher demand. When the assumption of fixed trip demand is relaxed, this tare system is no longer best, but only second best since too much traffic will, in general, be generated. The Free Rider Theorem states the following : Suppose road tolls can be charged, so that a best pricing system for public modes is posssible. Then there may exist free rides on some routes and modes, but never on a complete round trip.

  • PDF

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

A study on improving the bike way in the Urban river Waterfront (도시하천 수변공간 내 자전거도로 개선방안 연구)

  • Seo, Yong-Soo;Dong, Jae-Uk;Cho, Sung-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.481-489
    • /
    • 2017
  • The study area,Cheonan Stream, is an urban river that flows through urban areas in close proximity to densely populated areas and multi-use facilities. The natural river improvement project from 2006 to 2015 improved the quality of life of local residents with the improvement of river function, the restoration of the natural ecosystem and the securement of hydrophilic space. A bike way in the constructed waterside space was built focusing on trails. This study suggests improvements appropriate for insufficient bike way function-related regulations. The problems of ramps, river crossing facilities, stairway facilities, safety facilities, signs, road markings, and parking facilities, etc.have arisen in the utilization situation and citizen consciousness survey. As an improvement, it was suggested that 12% or fewer ramps should be improved, a submerged bridge should be installed at 7 places separated by stepping bridges, and signs and road markings according to bike way-related regulations should be installed and bike parking facilities at Cheonan station and Cheonan bus terminal should be expanded. The bike way in the waterfront of ChoenanCheon(river) will increase the accessibility and utilization rate of short-distance transportation with the institutional expansion of bike use facilities and work organizations and the improvement of facilities in accordance with urban rivers and bike-related regulations. Therefore, it is expected that the development of the living space will be beneficial for the citizens due to the elimination of traffic in the city and the activation of bike traffic.

Operation Case Analyses of Snow Removal Equipments using Information system Technologies (정보 시스템 기술을 적용한 제설장비 운영 사례 분석)

  • Kim, Hee-Jae;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.154-164
    • /
    • 2018
  • Purpose: Recent climate change makes weather-related disasters such as summer storms, heavy rains, winter snowfall disasters, and extreme cold temperature increase in trend. Heavy snowfall disasters requires speedy response due to various effects to traffic flows, buildings, and infrastructure. Heavy snowfall disaster response of South Korea is insufficient, even though heavy snowfall disasters affect urban safety. There have been lack of policy studies for heavy snowfall disasters. Method: This research analyzes case studies and explores implications using Information system technologies to snow removal vehicles and equipments for speedy snow removal during the heavy snowfall disasters. Results: Information system technology attachment to snow removal equipments can identify locations of snow removal vehicles and equipments for emergency period to support snow removal of adjacent jurisdictions. Conclusion: Case studies of this research can be further used for efficient application of snow removal tools of local governments.

Determination of the Required Minimum Spacing between Signalized Intersections and Bus-Bays (신호교차로와 버스정류장간 이격거리 산정에 관한 연구)

  • 하태준;박제진;임혜영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.73-82
    • /
    • 2002
  • The influence of bus stops near signalized intersections is one of the important factors which cannot be negligible in the analysis of the capacity of signalized intersections. Absence of consideration of bus bay can reduce capacity and increase the time that the stop of buses block other traveling vehicles. This influence is reflected by the bus blockage adjustment factor in KHCM, but the factor does not consider the course of each bus passing the intersection. Particularly, left turn buses have more influence on the capacity than the other buses and require the minimum length of the road for lane changes. All the existing criteria can apply only to arterial roads on which mostly traffic flows are continuous. And the criteria. which can determine the optimum location and the minimum distance between a signalized intersection and a bus bay, is not prepared and the related study is insufficient. Therefore, a theoretical formula is derived in this study being based on the theories which are avaliable to apply to the situation of signalized intersections.

Estimating Transportation-Related Greenhouse Gas Emissions in the Port of Busan, S. Korea

  • Shin, Kang-Won;Cheong, Jang-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • The port of Busan is the fifth busiest container port in the world in terms of total mass of 20-foot equivalent units transported. Yet no attempts have been made to estimate the greenhouse gas (GHG) emissions from the port of Busan by accounting for all port-related activities of the various transportation modes. With these challenges in mind, this study estimates the first activity-based GHG emissions inventory in the port of Busan, which consists of four transportation modes: marine vessels, cargo-handling equipment, heavy-duty trucks, and railroad locomotives. The estimation results based on the most recent and complete port-related activity data are as follows. First, the average annual transportation GHG emission in the port of Busan during the analysis period from 2000 to 2007 was 802 Gg $CO_2$-eq, with a lower value of 773 Gg $CO_2$-eq and an upper value of 813 Gg $CO_2$-eq. Second, the increase in the transportation-related GHG emissions in the port of Busan during the analysis period can be systematically explained by the amount of cargo handled ($R^2$=0.98). Third, about 64% of total GHG emissions in the port of Busan were from marine vessels because more than 40% of all maritime containerized trade flows in the port were transshipment traffic. Fourth, approximately 22% of the total GHG emissions in the port of Busan were from on-road or railroad vehicles, which transport cargo to and from the port of Busan. Finally, the remaining 14% of total GHG emissions were from the cargo handling equipment, such as cranes, yard tractors, and reach stackers.