• Title/Summary/Keyword: Road Simulator

Search Result 197, Processing Time 0.021 seconds

Development of a Model Based Predictive Controller for Lane Keeping Assistance System (모델기반 예측 제어기를 이용한 차선유지 보조 시스템 개발)

  • Hwang, Jun-Yeon;Huh, Kun-Soo;Na, Hyuk-Min;Jung, Ho-Gi;Kang, Hyung-Jin;Yoon, Pal-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.54-61
    • /
    • 2009
  • Lane keeping assistant system (LKAS) could save thousands of lives each year by maintaining lane position and is regarded as a promising active safety system. The LKAS is expected to reduce the driver workload and to assist the driver during driving. This paper proposes a model based predictive controller for the LKAS which requires cooperative driving between the driver and the assistance system. A Hardware-In-the-Loop-Simulator (HILS) is constructed for its evaluation and includes Carsim, Matlab Simulink and a lane detection algorithm. The single camera is mounted with the HILS to acquire the monitor images and to detect the lane markers. The simulation is conducted to validate the LKAS control performance in various road scenario.

A Comparative Evaluation on Visual Performance of CRT and TFT-LCD as Desktop Computer Displays (데스크탑용 CRT와 TFT-LCD의 시각 작업수행도 비교·평가)

  • Kim, Sang-Ho;Choi, Kyung-Lim
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.95-112
    • /
    • 2002
  • Two experiments were carried out to compare the suitability in visual tasks between cathode-ray tube (CRT) and thin film transistor-liquid crystal display (TFT-LCD). In the first experiment, the subjects were requested to detect pre-assigned target words or icons among distracters presented under time-invariant (static) image mode. The subjects' visual performance and fatigue were assessed while carrying out search tasks with dim and bright ambient light conditions. Significant interaction effects were found among displays, task types, and ambient light conditions. Due to visual fatigue, the subjects' accommodative power decreased in the end of task and the degradation was more significant for the CRT users and under bright ambient light. IN the second experiment, the subjects performed information processing task with time-varying road signs at a driving simulator to assess interaction effects between display types and changing speed of dynamic image. The perception time using TFT-TCD was shorter under slow image change while that of CRT was shorter rapid image change. Findings from this study suggest that, to improve visual task performance, users should carefully select their visual display type depending on the task to be performed.

Adaptive Transmission Scheme According to Vehicle Density in IEEE 802.11p MAC Protocol (IEEE 802.11p MAC 프로토콜에서 차량밀도에 따른 적응전송기법)

  • Woo, Ri-Na-Ra;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.53-58
    • /
    • 2012
  • The roadside unit (RSU) collects vehicle information from vehicles in the intelligent transportation system (ITS). The vehicle density on the road within the communication range of a RSU is a time varying parameter. The higher the vehicle density, the more vehicle information can be collected. Therefore, the probability of packet collision will be raised. In this paper, an adaptive transmission scheme is proposed to improve the probability of packet reception rate by changing the data rate and transmission period according to the vehicle density. The performance of IEEE 802.11p MAC protocol that is a standard for vehicular communications is evaulated in terms of the vehicle density with the ns-2,33 simulator.

Fundamental Study on Effect of Preceding Vehicle Information on Fuel Consumption Reduction of a Vehicle Group

  • Matsumoto, Shuichi;Kawashima, Hironao
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.173-178
    • /
    • 2013
  • It is a concern that eco-driving vehicles, because their driving behavior differs from other vehicles due to e.g. e-start, may inhibit smooth traffic flow. Therefore, it is necessary to study the cooperative eco-driving done by a vehicle group, putting "vehicle-to-vehicle communication" and "road-to-vehicle communication" into perspective. Based on these factors, this study aimed to: 1) Analyze fuel consumption rates and driving behaviors of more than one vehicle following an Eco-Driving vehicle. 2) Examine the effect of information on the fuel consumption rate of the preceding vehicles on the following vehicles. As a result, the following findings were obtained: 1) By providing information to multiple following vehicles, the fuel consumption rate of the second vehicle was not lowered, while that of the third one was. 2) It is possible that, when information on fuel consumption of a preceding vehicle is provided to the following one, an inter-vehicular distance is shortened during deceleration to contribute to smooth traffic flow. From the above results, it is suggested that, when targeting a vehicle group, sharing the information on preceding vehicles is effective.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

IT Convergence Technology in Plant Growing for Low-Carbon Green Industry (그린산업 육성을 위한 농업분야 IT융합기술)

  • Hwang, Doo-Hong;Shin, Min-Soo
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.123-134
    • /
    • 2012
  • Recently, The Bali Road Map was approved, as it demands that developing countries should also have the responsibility of greenhouse gas reduction from 2013. This suggests that the greenhouse gas and environment should be controlled across industry sectors. Accordingly, this study was conducted to identify the application and effects of the IT convergence technology to the smart farm and realize the low-carbon green industry in Korea. The smart farm technologies within and outside of Korea were comparatively analyzed for the low-carbon green industry policy. The study subjects were determined to propose the necessity of the study efficiently. First, the studies on the smart farm for low-carbon green industry policy were examined. Second, the suitable IT technology for the smart farm as well as the effect and the improvement plan of the IT technology-based smart farm system were examined. This study now aims to promote the low-carbon green industry policy and IT convergence technology and job creation. These will be achieved by providing the plan for linking the system simulator organization with the low-carbon green industry policy.

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

Dynamic Traffic Light Control Scheme Based on VANET to Support Smooth Traffic Flow at Intersections (교차로에서 원활한 교통 흐름 지원을 위한 VANET 기반 동적인 교통 신호등 제어 기법)

  • Cha, Si-Ho;Lee, Jongeon;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, traffic congestion and environmental pollution have occurred due to population concentration and vehicle increase in large cities. Various studies are being conducted to solve these problems. Most of the traffic congestion in cities is caused by traffic signals at intersections. This paper proposes a dynamic traffic light control (DTLC) scheme to support safe vehicle operation and smooth traffic flow using real-time traffic information based on VANET. DTLC receives instantaneous speed and directional information of each vehicle through road side units (RSUs) to obtain the density and average speed of vehicles for each direction. RSUs deliver this information to traffic light controllers (TLCs), which utilize it to dynamically control traffic lights at intersections. To demonstrate the validity of DTLC, simulations were performed on average driving speed and average waiting time using the ns-2 simulator. Simulation results show that DTLC can provide smooth traffic flow by increasing average driving speed at dense intersections and reducing average waiting time.

An Analysis of Diversion Rate by The types of Display and The levels of Delay on VMS (Variable Message Sign) (가변안내표지판 메시지 표출형식 및 지체수준 별 운전자 우회율 분석 연구)

  • Yu, Su-In;Kim, Byung-Jong;Kim, Won-Kyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.54-67
    • /
    • 2013
  • The main purpose of this study is to analyze the diversion rate by the levels of delay and the types of display. For this study, we developed the logit model by analyzing the result of SP survey of drivers who have driver's licence after manipulating a virtual driving simulator. The result of analysis was that the types of display was not statistically significant to the diversion rate. On the other hand, the levels of delay was very meaningful factor with the diversion rate. When the main road was flowing smoothly, drivers started to detour at the levels of delay 125% under the traffic free flow state. Similarly, when the levels of delay got worse, the diversion rate kept the same percentage as it was at the levels of delay 125% state which represented a smooth road condition. Likewise, when the main road's traffic flow was slow, drivers appeared to make detours at the same state of the levels of delay 125%. It was found that as the levels of delay got worse, the diversion rose higher than the diversion rate at the condition of slow traffic flow situation with the levels of delay 125%. The result of this study suggests the criterion of drivers detour point. For the conclusion, the result of study would be a reasonable reference for establishing transportation strategies by reflecting drivers' detouring property and would improve the efficiency of traffic flow.

A study on the operation characteristics of oversized exhaust port applicable to double-deck tunnel (복층터널에 적용 가능한 화재 연동형 대배기구 운영 특성 분석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.887-895
    • /
    • 2019
  • Recently, the number of underground road development projects has been increasing to solve traffic problems in the national capital region and metropolitan areas with intensified overcrowding, and there has been a tendency to plan underground roads by applying a double-deck tunnel technology that has advantages in constructability and economical efficiency. The double-deck tunnel has a structure where one excavation section is divided into two parts and used as up and down lines, and is mainly used as a road for small vehicles only due to its low floor height. In addition, due to the small cross-sectional area, it has characteristics different from those of general road tunnels in terms of ventilation and disaster prevention. In this regard, this study proposed an operational plan that applies an oversized exhaust system, which is one of semi-transverse ventilation systems, to small cross-sectional tunnels like double-deck tunnel with low floor height, and a comparative analysis between smoke exhaust characteristics according to the fire occurrence locations and oversized exhaust systems was conducted using the Fire Dynamics Simulator (FDS). The results showed that unlike uniform exhaust, intensive smoke exhaust using the oversized exhaust port maximized the delay effect of smoke diffusion and limited the smoke within 50 m above and below the fire point.