• Title/Summary/Keyword: Road Sensor Data

Search Result 143, Processing Time 0.029 seconds

An Efficient Local Map Building Scheme based on Data Fusion via V2V Communications

  • Yoo, Seung-Ho;Choi, Yoon-Ho;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.45-56
    • /
    • 2013
  • The precise identification of vehicle positions, known as the vehicle localization problem, is an important requirement for building intelligent vehicle ad-hoc networks (VANETs). To solve this problem, two categories of solutions are proposed: stand-alone and data fusion approaches. Compared to stand-alone approaches, which use single information including the global positioning system (GPS) and sensor-based navigation systems with differential corrections, data fusion approaches analyze the position information of several vehicles from GPS and sensor-based navigation systems, etc. Therefore, data fusion approaches show high accuracy. With the position information on a set of vehicles in the preprocessing stage, data fusion approaches is used to estimate the precise vehicular location in the local map building stage. This paper proposes an efficient local map building scheme, which increases the accuracy of the estimated vehicle positions via V2V communications. Even under the low ratio of vehicles with communication modules on the road, the proposed local map building scheme showed high accuracy when estimating the vehicle positions. From the experimental results based on the parameters of the practical vehicular environments, the accuracy of the proposed localization system approached the single lane-level.

  • PDF

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part II - Effects of Road Emission (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part II - 도로 배출 영향)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1653-1667
    • /
    • 2020
  • In this study, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. We investigated the characteristics of fine particulate matter (PM2.5) distributions in a building-congested district. To analyze the effects of road emission on the PM2.5 concentrations, we calculated road emissions based on the monthly, daily, and hourly emission factors and the total amount of PM2.5 emissions established from the Clean Air Policy Support System (CAPSS) of the Ministry of Environment. We validated the simulated PM2.5 concentrations against those measured at the PKNU-AQ Sensor stations. In the cases of no road emission, the LDAPS-CFD model underestimated the PM2.5 concentrations measured at the PKNU-AQ Sensor stations. The LDAPS-CFD model improved the PM2.5 concentration predictions by considering road emission. At 07 and 19 LST on 22 June 2020, the southerly wind was dominant at the target area. The PM2.5 distribution at 07 LST were similar to that at 19 LST. The simulated PM2.5 concentrations were significantly affected by the road emissions at the roadside but not significantly at the building roof. In the road-emission case, the PM2.5 concentration was high at the north (wind speeds were weak) and west roads (a long street canyon). The PM2.5 concentration was low in the east road where the building density was relatively low.

Development and Application of the High Speed Weigh-in-motion for Overweight Enforcement (고속축하중측정시스템 개발과 과적단속시스템 적용방안 연구)

  • Kwon, Soon-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.

  • PDF

Algorithm for Identifying Highway Horizontal Alignment using GPS/INS Sensor Data (GPS/INS 센서 자료를 이용한 도로 평면선형인식 알고리즘 개발)

  • Jeong, Eun-Bi;Joo, Shin-Hye;Oh, Cheol;Yun, Duk-Geun;Park, Jae-Hong
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.175-185
    • /
    • 2011
  • Geometric information is a key element for evaluating traffic safety and road maintenance. This study developed an algorithm to identify horizontal alignment using global positioning system(GPS) and inertial navigation system(INS) data. Roll and heading information extracted from GPS/INS were utilized to classify horizontal alignment into tangent, circular curve, and transition curve. The proposed algorithm consists of two components including smoothing for eliminating outlier and a heuristic classification algorithm. A genetic algorithm(GA) was adopted to calibrate parameters associated with the algorithm. Both freeway and rural highway data were used to evaluate the performance of the proposed algorithm. Promising results, which 90.48% and 88.24% of classification accuracy were obtainable for freeway and rural highway respectively, demonstrated the technical feasibility of the algorithm for the implementation.

Improvement of Vehicle Classification Method using Vehicle Height Measurement (차량높이 계측을 통한 차종분류 향상 방안 연구)

  • Oh, Ju-Sam;Jang, Kyung-Chan;Kim, Min-Sung
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-51
    • /
    • 2010
  • A vehicle classification data is essential for traffic road planning and pavement. In this study, the vehicle height, vehicle criteria for classification applied to measure the height of the car driving has devised a way to install equipment. It is capable of measuring the vehicle height was confirmed to field experiments, the measurement system is obtained to the vehicle length and height data. In this experiment, results showed the accuracy of 88.6% compared to classification data using the discriminant function obtained from video replaying. The height of vehicle applying the classification criteria can be utilized to determine the vehicle class.

Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model (영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법)

  • Choi, Na-Rae;Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

PRELIMINARY STUDY OF ASTER DATA APPLICATIONS IN THAILAND

  • Anan, Thanwarat
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1005-1005
    • /
    • 2003
  • The purpose of this study is to evaluate the potential application of TERRA-ASTER data in Thailand. ASTER VNIR, SWIR and TIR data covering greater Bangkok and Chiangmai province were processed with various techniques in the spatial domain to study the applicability to various disciplines. ASTER data was also combined with other satellite data in order to utilize multi-sensor methods. It was found that VNIR data can clearly identify urban pattern including road network and vegetation index. While SWIR and TIR data can well separate between urban and non urban area and TIR data can differentiate among thermal surfaces. Furthermore, dense urban areas such as central business area could be highlighted. Land utilization, vegetable distribution and differences of temperature distribution were investigated.

  • PDF

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

Study on Remote control and monitoring system of the multipurpose guard rail using USN (USN을 이용한 다목적 가드레일의 원격제어 및 모니터링 시스템에 관한 연구)

  • Song, Je-Ho;Lee, In-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7176-7181
    • /
    • 2015
  • This thesis is about the system where the solar module is attached to the high functional guardrail posts with anti-weed, anti-plant, and road-kill applied to produce internal power, enabling the integrated control and real-time monitoring of appearance of wildlife and road conditions using the USN. The whole system consists of a photovoltaic module(PV), a detection sensor(pyroelectric), a controller(operation select and motion sensor), the USN system, the DB(sound and flash), an output unit of sound and flash, and the control system of road-kill prevention and safety induction for vehicles. Thus this study aims to address the remote control and monitoring system of multipurpose guardrails to improve road environment, prevent road-kills, protect wild animals, and guide cars safely by using the USN which is combined with new renewable energy and IT convergence technology. As a result of the study on the remote control and monitoring system using the USN, it was ascertained that the response time of the unmanned sensing system was within 5.1 ms with the current consumption of 0.328 mA, and the data transmission speed of the remote control system was 250 kbps with the current consumption of 0.283 mA.