• Title/Summary/Keyword: Rn-222

Search Result 103, Processing Time 0.032 seconds

Radon in Mineral Spring Water of Mongolia

  • Oyunchimeg, Ts.;Khuukhenkhuu, G.;Norov, N.;Ajnai, l.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.279-281
    • /
    • 2002
  • The results of the specific radioactivity study for Rn-222 in mineral spring water of Khalzan mountain and Janchivlan of Mongolia, using the HP-Ge gamma-spectrometer, are discussed. Some physical and chemical properties in some sample of mineral spring water are determined.

  • PDF

Assessment of Indoor Radon Pollution from Underground Water (지하수로부터의 라돈 실내오염 평가)

  • 유동한;김상준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.130-131
    • /
    • 2000
  • 라돈(Rn-222)은 우라늄(U-238) 방사능계열의 원소로서 라듐(Ra-226)의 붕괴시 자연생성되는 가스상 물질이다. 화학적으로는 불활성이며 무색, 무취의 특성을 가지고 있다. 공기보다 8∼9배 무겁기 때문에 지표면 가깝게 존재하므로 인체노출이 쉬운 물질로 알려져 있다. 라돈은 최근까지도 온천 등지에서 건강에 매우 좋은 원소로 알려져 왔으나 사실은 기준치 이상의 라돈을 마시거나 호흡했을 경우, 치명적인 폐암을 유발시킨다는 것이 밝혀졌다(Doull et al, 1999) (중략)

  • PDF

Study on the Ventilation Effect in the Two Compartment Model for Indoor Radon Pollution (실내라돈오염을 위한 2구역 모델에서의 환기영향평가)

  • 유동한;김상준;양지원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.237-238
    • /
    • 2001
  • 라돈(Rn-222)은 우라늄(U-238) 방사능계열의 원소로서 라듐(Ra-226)의 알파($\alpha$)붕괴시 자연생성되는 가스상 물질이다. 암석 내에서 생성되어 공극내에서 물에 용해된 라돈은 붕괴하지 않고 상태를 유지하게 되는데 이런 라돈이 존재하는 암석층으로부터 지하수를 취수할 경우, 상당량의 라돈이 지하수속에 용해되어 있을 수 있다. 이렇게 용해된 상당량의 라돈은 실내공기로 휘발하면서 주변으로 확산하게 된다. (중략)

  • PDF

A Study on Distribution of Radon Concentration at Atmospheric in Seoul (서울 대기중 라돈농도의 분포에 관한 연구)

  • ;;;T. Iida
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.279-281
    • /
    • 2000
  • 발암성 물질로 알려진 라돈($^{222}Rn$)은 원래 불활성기체로 자연계에 널리 존재하는 자연방사능으로 암석이나 토양 같은 지각물질에서 발생하는 우라늄($^{238}U$) 붕괴계열인 라듐($^{226}Ra$)의 붕괴과정에서 생성되는 방사성 가스이다. 라돈($^{222}R$)은 $\alpha$붕괴에 의하여 $^{218}Po$, $^{214}Po$등의 자핵종(Radon daughter)을 생성하며, 최종적으로 납($^{210}Pb$)으로 변한다 라돈이 폐에 흡입되면 붕괴하면서 $\alpha$방사선을 방출하는데, 이것이 인체의 세포를 죽이거나 염색체를 손상시킬 수 있으며, 폐암의 발생 위험률을 높이는 것으로 보고되었다. (중략)

  • PDF

Study on the Measurement of Radon concentrations in soil samples using γ-spectrometer (γ-spectrometer를 이용한 토양시료의 라돈농도 측정법에 관한 연구)

  • Kang, Sunga;Lee, Sangsoo;Choi, Guirack;Lee, Junhaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • The radioactive gas radon ($^{222}Rn$), which is generated from the decay process of uranium ($^{238}U$) originating from the soil of more than 85 percent higher the porosity of the soil, the soil can radiate out the possibility that many isotopes. In order to protect the human body from radon, above all, the development of accurate measurement techniques to formulate appropriate measures should be followed. This study Gamma-ray spectrometry using a high purity germanium (HPGe) detector, if you want to measure radon unstable the nature radiation of the background problems can be reduced, radium and radon daughter nuclides after radioactive equilibrium leads to Radon concentration was measured, the soil samples from the Gamma-ray emitting nuclides, and the energy spectrum is analyzed.

Groundwater Ages and Flow Paths at a Coastal Waste Repository Site in Korea, Based on Geochemical Characteristics and Numerical Modeling

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Koh, Dong-Chan;Lee, Chung-Mo;Ryu, Sang Min;Lee, Soo-Hyoung
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Groundwater flow paths and groundwater ages at a radioactive waste repository located in a coastal area of South Korea were evaluated using the hydrochemical and hydrogeological characteristics of groundwater, surface water, rain water, and seawater, as well as by numerical modeling. The average groundwater travel time in the top layer of the model, evaluated by numerical modeling and groundwater age (34 years), approximately corresponds to the groundwater age obtained by chlorofluorocarbon (CFC)-12 analysis (26-34 years). The data suggest that the groundwater in wells in the study area originated up-gradient at distances of 140-230 m. Results of CFC analyses, along with seasonal variations in the δ18O and δD values of groundwater and the relationships between 222Rn concentrations and δ18O values and between 222Rn concentrations and δD values, indicate that groundwater recharge occurs in the summer rainy season and discharge occurs in the winter dry season. Additionally, a linear relationship between dissolved SiO2 concentrations and groundwater ages indicates that natural mineralization is affected by the dilution of groundwater recharge in the rainy summer season.

Application of Soil's Self-Decontamination Ability to Contaminated Ground (흙의 자체정화능력을 이용한 오염된 토양정화)

  • Jeong, Jin-Seob;Jhung, Jhung-Kwon;Kim, Tae-Hyung;Fang, Hsai-Yang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.632-638
    • /
    • 2006
  • There are numerous approaches available to cleanup a contaminated surface and subsurface ground currently in use, however, these methods all classify the decontamination after the contamination has penetrated into the soil masses and is costly. Unlike these approaches, in this study, utilization of soil's self-decontamination ability by rearranging and preplanning of the topographical features and surface and subsurface drainage systems for the potential contamination sites before or during contamination process has been considered as an another cleanup method. Step by step explanations on why and how to develop the self-decontamination procedure is proposed in detail. Two examples are presented including contaminated saltwater intrusion along a coastal region and control or prevention of radioactive toxic radon gas ($^{222}Rn$) in residential areas. The effectiveness of the proposed systems to these two examples using the soil's self-decontamination ability is well illustrated.

Measurement of Radon and its Daughters Concentration in Air (공기중 라돈 및 라돈 자핵종의 농도 측정)

  • Park, Y.W.;Ha, C.W.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 1989
  • A Lucas cell was established and calibrated by using the double layer tube standard radon source. The calibration factors were 0.031$\pm$0.002 (pCi/l)/(cph/Cell) at room temperature, and 0.029$\pm$0.001 (pCi/l)/(cph/Cell) at $50^{\circ}C$. Radon and its daughters concentrations were measured in a room air for the demonstrating purpose. The concentrations of 222 Rn, $^{218}Po,\;224\;Pb,\;and\;^{214}Bi$ were 0.87, 0.53, 0.35 and 0.26 pCi/l. The total eqilibrium factor was around 0.40 and the WL is $3.33{\times}10^{-3}$, resulting in 30 mrem/yr at this place.

  • PDF

Real-time monitoring of radon background level at Gosan site, Jeju Island (제주도 고산지역의 라돈 배경농도 실시간 모니터링)

  • Kang, Chang-Hee;Kim, Won-Hyung;Hu, Chul-Goo;Kang, Dong-Hun
    • Analytical Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2012
  • The real-time monitoring of radon ($^{222}Rn$) concentrations has been carried out to evaluate the background concentration level of atmospheric radon in Gosan site, Jeju Island. The mean concentration of radon for the recent 10 years was 2831 $mBq/m^3$ (0.077 pCi/L), which was 19.5 time lower than that of indoor radon in Korea. The seasonal concentrations were 2657, 2071, 3249, 3384 $mBq/m^3$ respectively for spring, summer, fall, and winter seasons. In monthly comparison, the radon concentrations were high in October and low in July. The hourly concentrations have increased during the nighttime, showing 3666 $mBq/m^3$ at 7 a.m., and decreased relatively during the daytime, showing 2755 $mBq/m^3$ at 2~3 p.m. From the back trajectory analysis, the radon concentrations showed higher values when the air mass was moved from the Asia continent to Jeju area, on the other hand, it showed low values when it was moved from the North Pacific Ocean.

Evaluation of Excess Lung Cancer Risk in Korean due to Indoor Exposure to Natural $^{222}Rn$ Progenies (한국인의 실내 라돈-222 자핵종 피폭으로 인한 초과 폐암위험)

  • Chang, Si-Young;Ha, Chung-Woo;Lee, Byung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.57-70
    • /
    • 1992
  • An excess risk of lung cancer mortality among Koreans, attributable to indoor $^{222}Rn$ daughters exposure, were quantitatively evaluated by applying a stochastic health risk projection model on the radiation exposure. The lung cancer rate in Korean males and females, based on the 1989 demographic data, were estimated to be $22.4/10^5-y\;and\;9.5/10^5-y$, respectively The lifetime baseline lung cancer risks, deduced from these rates, appeared to be 0.047 and 0.019 for males and females, respectively, and were lower than the corresponding 1984 values of 0.067 and 0.025 in the U.S.A. The excess risk coefficients, derived by modified relative risk projection model of the BEIR-IV Committee under the US National Academy of Science, per annual 1.0 WLM of exposure to indoor radon daughters were estimated to be 0.022/WLM for males, 0.009/WLM for females, and 0.017/WLM for both sexes. The resulting annual frequency of excess lung cancer mortality for the life expectancy in the Korean population appeared to be 230/10^6-WLM, which was an approximate median of $120{\sim}450/10^6-WLM$ reported so far in the world.

  • PDF