• Title/Summary/Keyword: River-bed erosion

Search Result 77, Processing Time 0.032 seconds

Soil Erosion and river-bed change of the Keum river basin using by GIS and RS (GIS와 RS를 이용한 금강유역 토양침식과 하상변화 연구)

  • Lee, Jin-Young;Kim, Ju-Young;Yang, Dong-Yoon;Nahm, Wook-Hyun;Kim, Jin-Kwan
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • Flooding hazard caused by natural and artificial environmental changes is closely associated with change in river bed configuration. This study is aimed at explaining a river-bed change related to soil erosion in the Keum river basin using GIS and RS. The USLE was used to compute soil erosion rate on the basis of GIS. River-bed profiles stretching from Kongju to Ippo were measured to construct a 3D-geomorphological map. The river-bed change was also detected by remote sensing images using Landsat TM during the period of 1982 to 2000 for the Keum river. The result shows that USLE indicates a mean soil erosion rate of $1.8\;kg/m^2/year$, and a net increase of a river-bed change at a rate of $+5\;cm/m^2$/year in the Kangkyeong area. The change in river-bed is interpreted to have been caused by soil erosion in the downstream of the Keum river basin. In addition river-bed change mainly occurred on the downstream of the confluence where tributaries and the main channel meet. Other possible river-bed change is caused by a removal of fluvial sand aggregates, which might have resulted in a net decrease of exposed area of sediment distribution between 1991 and 1995, while a construction of underwater structures, including a bridge, a reclamation of sand bars for rice fields and dikes, resulted in an increase of the exposed area of river-bed due to sediment accumulation.

  • PDF

The relationships of erosion and river channel change in the Geum river basin (금강유역의 침식과 하상변동과의 관계)

  • 양동윤;짐주용;이진영;이창범;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.52-74
    • /
    • 2000
  • The basement rock of upper stream of Keum River Valley consists of Precambrian gneiss which is resistant to weathering. That of mid and lower stream valley, however, is mainly composed of Mesozoic granites which are vulnerable to weathering. The upstream part of Geum River Basin is typified by the deeply-incised and steep meandering streams, whereas mid and lower part is characterized by wide floodplain and gently dipping river bottom toward the Yellow Sea. In particular flooding deposits, in which are imprinted a number of repetitions of erosion and sedimentation during the Holocene, are widely distributed in the lower stream of Geum River Basin. For understanding of erosions in the mid and lower stream of Geum River Basin, the rate of erosion of each small basins were estimated by using the data of field survey, erosional experiments and GIS ananlysis. It was revealed that erosion rate appeared highest in granite areas, and overall areas, in this field survey were represented by relatively high erosion rates. By implemeatation of remote sensing and imagery data, the temporal changes of river bed sediments for about last 11 years were successfully monitored. Observed as an important phenomenon is that the river bed has been risen since 1994 when an embankment (Dyke) was constructed in the estuarine river mouth. From the results derived from the detailed river bed topographical map made in this investigation, the sedimentation of the lower river basin is considered to be deposited with about 5 cm/year for the last 11 years. Based on this river bed profile analysis by HEC-6 module, it is predicted that Geum River bed of Ganggyeong area is continuously rising up in general until 2004. Although extraction of a large amount of aggregates from Gongju to Ganggyung areas, the Ganggyung lower stream shows the distinct sedimentation. Therefore, it is interpreted that the active erosions of tributary basins Geum drainage basins can affect general river bed rising changes of Geum River.

  • PDF

An Assessment of Flow Characteristic and Riverbed Change by Construction of Hydraulic Structure (수리구조물 설치에 따른 흐름특성 및 하상변동 연구)

  • Kwak, Jaewon;Jin, Hwansuk;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.542-550
    • /
    • 2017
  • The estimations of flow characteristics and river-bed erosion or sedimentation are very important for hydraulic structure design, floodplain management, and especially, river management. The objective of the study is therefore to estimate the change of flow characteristics and river-bed change due to a hydraulic structure construction. With 11.65 km study area of the Geum River which are located in downstream of Daecheong Dam, flow characteristics and river-bed change were estimated based on the RMA2 and SED2D model. As the result of the study, the increase of river-bed sedimentation in upstream and river-bed erosion in downstream were occurred by the construction of hydraulic structure.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River (하천을 횡단하는 도수관로의 최적 매설구간 선정을 위한 흐름 및 하상변동 수치모의)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1756-1763
    • /
    • 2014
  • A water pipeline buried under the riverbed could be exposed by bed erosion, therefore safe crossing sections should be analyzed for preventing damages due to the exposure of pipelines. In this study, flow and bed changes have been simulated using a two-dimensional numerical model for selecting the optimized section of pipeline crossing in the Geum River. As a result of simulation with the 20-year recurrence flood, sediment deposition has been distributed overall in the channel and bed erosion over 2 m has occurred near bridge piers. For the extreme flood simulation, the channel bed near the bridge piers has been eroded down to the buried depth. Therefore, within 140 m upstream of the bridge piers, bed erosion affects a buried pipeline in safety due to bridge pier effects and the crossing section over 150 m upstream of bridge piers is selected as a safe zone of a water pipeline.

Numerical analysis of lateral geomorphology changes by channel bed deposition and bank erosion at the river confluence section (합류부 구간에서의 하상퇴적과 하안침식에 의한 평면적 하도변화 수치모의)

  • Ji, Un;Jang, Eun Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • The confluence section of rivers forms complex flow pattern due to inflow discharge variation at the mainstream and tributary. Due to complex flow characteristics, bed change and bank erosion at the local section produce lateral geomorphology changes in rivers. In this study, bankline change by bank erosion and bed change were simulated using CCHE2D of 2-dimensional numerical model for quantitative analysis of lateral changes in the confluence section of South Han River and Geumdang Stream. As a result, bankline at the left-side channel of the mainstream was largely changed in the downstream section of the confluence compared to the upstream section. Also, bank erosion in the tributary was hardly occurred and bankline at the left-side tributary and right-side main stream moved to riverside land due to decreased velocity and deposition.

Potential of River Bottom and Bank Erosion for River Restoration after Dam Slit in the Mountain Stream

  • Kang, Ji-Hyun;So, Kazama
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.46-46
    • /
    • 2011
  • Severe sediment erosion during floods occur disaster and economic losses, but general sediment erosion is basic mechanism to move sediment from upstream to downstream river. In addition, it is important process to change river form. Check dam, which is constructed in mountain stream, play a vital role such as control of sudden debris flow, but it has negative aspects to river ecosystem. Now a day, check dam of open type is an alternative plan to recover river biological diversity and ecosystem through sediment transport while maintaining the function of disaster control. The purpose of this paper is to verify sediment erosion progress of river bottom and bank as first step for river restoration after dam slit by cross-sectional shear stress and critical shear stress. Study area is upstream reach of slit check dam in mountain stream, named Wasada, in Japan. The check dam was slit with two passages in August, 2010. The transects were surveyed for four upstream cross-sections, 7.4 m, 34 m, 86 m, and 150 m distance from dam in October 2010. Sediment size was surveyed at river bottom and bank. Sediment of cobble size was found at the wetted bottom, and small size particles of sand to medium gravel composed river bank. Discharge was $2.5\;m^3/s$ and bottom slope was 0.027 m/m. Excess shear stress (${\tau}_{ex}$) was calculated for hydraulic erosion by subtracting the values of critical shear stress (${\tau}_{c}$) from the value of shear stress (${\tau}$) at river bottom and bank (${\tau}_{ex}=\tau-{\tau}_c$). Shear stress of river bottom (${\tau}_{bottom}$) was calculated using the cross-sectional shear stress, and bank shear stress (${\tau}_{bank}$) was calculated from the method of Flintham and Carling (1988). $${\tau}_{bank}={\tau}^*SF_{bank}((B+P_{bed})/(2^*P_{bank}))$$ where $SF_{bank}=1.77(P_{bed}/p_{bank}+1.5)^{-1.4}$, B is the water surface width, $P_{bed}$ and $P_{bank}$ are wetted parameter of the bed and bank. Estimated values for ${\tau}_{bottom}$ for a flow of $2.5\;m^3/s$ were lower as 25.0 (7.5 m cross-section), 25.7 (34 m), 21.3 (86 m) and 19.8 (150 m), in N/$m^2$, than critical shear stress (${\tau}_c=62.1\;N/m^2$) with cobble of 64 mm. The values were insufficient to erode cobble sediment. In contrast, even if the values of ${\tau}_{bank}$ were lower than the values for ${\tau}_{bottom}$ as 18.7 (7.5 m), 19.3 (34 m), 16.1 (86 m) and 14.7 (150 m), in N/$m^2$, excess shear stresses were calculated at the three cross-sections of 7.5 m, 34 m, and 86 m distances compare with ${\tau}_c$ is 15.5 N/$m^2$ of 16mm gravel. Bank shear stresses were sufficient for erosion of the medium gravel to sand. Therefore there is potential to erode lateral bank than downward erosion in a flow of $2.5\;m^3/s$. Undercutting of the wetted bank can causes bank scour or collapse, therefore this channel has potential to become wider at the same time. This research is about a potential of sediment erosion, and the result could not verify with real data. Therefore it need next step for verification. In addition an erosion mechanism for river restoration is not simple because discharge distribution is variable by snow-melting or rainy season, and a function for disaster control will recover by big precipitation event. Therefore it needs to consider the relationship between continuous discharge change and sediment erosion.

  • PDF

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF

Numerical analysis on erosion process of replenished sediment on rock bed

  • Takebayashi, Hiroshi;Yoshiiku, Musashi;Shiuchi, Makoto;Yamashita, Masahiro;Nakata, Yasusuke
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.17-17
    • /
    • 2011
  • As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. As a method of countermeasure to bed degradation and armoring phenomena of bed material in the downstream area of dam reservoirs, sediment augmentation (replenished sediment) has been carried out in many Japanese rivers. In general, bed of the replenished sediment site is composed of rocks, because the site is located in the downstream area of the dams and sediment supply is very small. Bed deformation process has been researched by many researchers. However, most of them can treat movable bed only and cannot be applied to the bed deformation process of sediment on rocks. If the friction angle between the sediment and the bed surface is assumed to be the same as the friction angle between the sediment and the sediment, sediment transport rate must be smaller without sediment deposition layer on the rocks. As a result, the reproduced bed geometry is affected very well. In this study, non-equilibrium transport process of non-cohesive sediment on rigid bed is introduced into the horizontal two dimensional bed deformation model and the model is applied to the erosion process of replenished sediment on rock in the Nakagawa, Japan. Here, the Japanese largest scale sediment augmentation has been performed in the Nakagawa. The results show that the amounts of the eroded sediment and the remained sediment reproduced by the developed numerical model are $56300m^3$ and $26800m^3$, respectively. On the other hand, the amounts of the eroded sediment and the remained sediment measured in the field after the floods are $56600m^3$ and $26500m^3$, respectively. The difference between the model and field data is very small. Furthermore, the bed geometry of the replenished sediment after the floods reproduced by the developed model has a good agreement with the measured bed geometry after the floods. These results indicate that the developed model is able to simulate the erosion process of replenished sediment on rocks very well. Furthermore, the erosion speed of the replenished sediment during the decreasing process of the water discharge is faster than that during the increasing process of the water discharge. The replenished sediment is eroded well, when the top of the replenished sediment is covered by the water. In general, water surface level is kept to be high during the decreasing process of the discharge during floods, because water surface level at the downstream end is high. Hence, it is considered that the high water surface level during the decreasing process of the water discharge affects on the fast erosion of the replenished sediment.

  • PDF

Prediction of River Bed Change due to Yongdam Dam Discharge (용담댐 방류에 따른 하상변동 예측)

  • Kim, Young-Bok;Jung, Seung-Kwon;Shim, Soon-Bo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.69-81
    • /
    • 2006
  • The purpose of this study is to identify the downstream influences due to the dam discharge by using 2-dimensional model, SMS(Surface water Modeling System). RMA-2 and SED-2D in SMS were applied to Yongdam multipurpose dam watershed located in Gum river basin. Through the simulation, erosion and deposit quantitative analysis of sinuous channels and scour pattern analysis of bridges have been done. A differences erosion depths between deposit are simulated as $-102.4 mm{\sim}54.2 mm$ at No.176(1.4 km) and $-104.1 mm{\sim}28.9 mm$ at No.146(7.4 km), sinuous channel. The river bed at Kamdong bridge in straight channal is simulated as uniform erosion. However, the river bed at Dumdul bridge in sinuous channal has been shown as different erosion depths at each sides. Consequently, the parts that could not be simulated on the existing 1-dimensional model, can be improved results by using a 2-dimensional model, about weakness points for hydraulic modeling such as extreme bend, tributary confluence.