• Title/Summary/Keyword: River water quality modeling

Search Result 164, Processing Time 0.031 seconds

Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2] (아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용)

  • Kim, Yoon-Hee;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.205-212
    • /
    • 2004
  • Phosphorus cycle was studied in a deep stratified reservoir in summer monsoon area (Lake Soyang, Korea) by surveying phosphorus input from the watershed and the movement of phosphorus within the reservoir. And the spatial and temporal distribution of phosphorus was modeled with a 2-dimensional water quality model (CE-QUAL-W2), Phosphorus loading was calculated by measuring TP in the main inflowing river (the Soyang River) accounting for 90% of watershed discharge. TP of the Soyang River showed a large daily variation with the flow rate. High phosphorus loading occurred during a few episodic storm runoff laden with suspended sediments and phosphorus. Because storm runoff water on rainy days have lower temperature, it plunges into a depth of same temperature (usually below 20m depth), forming an intermediate turbidity layer with a thickness of 20 ${\sim}$ 30 m. Because of stable thermal stratification in summer the intermediate layer water of high phosphorus content was discharged from the dam through a mid-depth outlet without diffusing into epilimnion. The movement of runoff water within the reservoir, and the subsequent distribution of phosphorus were well simulated by the water quality model showing a good accuracy. The major parameter for the calibration of phosphorus cycle was a settling velocity of detritus, which was calibrated to be 0.75 m ${\cdot}$ $day^{-1}$. It is concluded that the model can be a good simulator of limnological phenomena in reservoirs of summer monsoon area.

Estimating Chlorophyll-a Concentration using Spectral Mixture Analysis from RapidEye Imagery in Nak-dong River Basin (RapidEye영상과 선형분광혼합화소분석 기법을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Lee, Hyuk;Nam, Gibeom;Kang, Taegu;Yoon, Seungjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.329-339
    • /
    • 2014
  • This study aims to estimate chlorophyll-a concentration in rivers using multi-spectral RapidEye imagery and Spectral Mixture Analysis (SMA) and assess the applicability of SMA for multi-temporal imagery analysis. Comparison between images (acquired on Oct. and Nov., 2013) predicted and ground reference chlorophyll-a concentration showed significant performance statistically with determination coefficients of 0.49 and 0.51, respectively. Two band (Red-RE) model for the October and November 2013 RapidEye images showed low performance with coefficient of determinations ($R^2$) of 0.26 and 0.16, respectively. Also Three band (Red-RE-NIR) model showed different performance with $R^2$ of 0.016 and 0.304, respectively. SMA derived Chlorophyll-a concentrations showed relatively higher accuracy than band ratio models based values. SMA was the most appropriate method to calculate Chlorophyll-a concentration using images which were acquired on period of low Chlorophyll-a concentrations. The results of SMA for multi-temporal imagery showed low performance because of the spatio-temporal variation of each end members. This approach provides the potential of providing a cost effective method of monitoring river water quality and management using multi-spectral imagery. In addition, the calculated Chlorophyll-a concentrations using multi-spectral RapidEye imagery can be applied to water quality modeling, enhancing the predicting accuracy.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir (실시간 저수지 탁수 감시 및 예측 모의)

  • Chung, Se-Woong;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

A Study to Improve the Spatial Data Design of Korean Reach File to Support TMDL Works (TMDL 업무 지원을 위한 Korean Reach File 공간자료 설계 개선 연구)

  • Lee, Chol Young;Kim, Kye Hyun;Park, Yong Gil;Lee, Hyuk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • In order to manage water quality efficiently and systematically through TMDL (Total Maximum Daily Load), the demand for the construction of spatial data for stream networks has increased for use with GIS-based water quality modeling, data management and spatial analysis. The objective of this study was to present an improved KRF (Korean Reach File) design as framework data for domestic stream networks to be used for various purposes in relation to the TMDL. In order to achieve this goal, the US EPA's RF (River Reach File) was initially reviewed. The improved design of the graphic and attribute data for the KRF based on the design of the EPA's RF was presented. To verify the results, the KRF was created for the Han River Basin. In total, 2,047 stream reaches were divided and the relevant nodes were generated at 2,048 points in the study area. The unique identifiers for each spatial object were input into the KRF without redundancy. This approach can serve as a means of linking the KRF with related database. Also, the enhanced topological information was included as attributes of the KRF. Therefore, the KRF can be used in conjunction with various types of network analysis. The utilization of KRF for water quality modeling, data management and spatial analysis as they pertain to the applicability of the TMDL should be conducted.

Assesment of Water Quality Standards using Stochastic Distribution Characteristics between Dynamic Modeling Results and Observed Data (동적수질예측결과의 확률분포특성을 이용한 목표수질 달성가능성 평가)

  • Ha, Sung-Ryong;Lee, Ji-Heon;Seo, Se-Deok;Lee, Seung-Chul;Park, Jung-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • Total Maximum Daily Load(TMDL) is a core basin management system to assign total emissions of pollutants to unit basin and emission source within a limit of the target water quality and to secure sustainability. considering "Environment and development" together. By current technical guidance of TMDL, the water quality in the riverbed of which the target water quality is noticed, must achieve the target; and the water quality standard for evaluating achievement of the target should be prescribed as non-excessive probability quality of water on the basis of the pertinent water quality documents. Therefore, the study calculated the target water quality by each unit basin which the target water quality must be noticed through the analysis of probability for water quality documents in rivers at the time of establishing a plan, and the study evaluated the achievement possibility of the target water quality by analyzing and comparing the target water quality plan with the standard water quality to evaluate the achievement of the target water quality. As the result, applying the proposed method to Mihocheon River system, it is concluded that selected the target water quality (Each BOD 3.3mg/1 and BOD 3.0mg/1) in Miho A and Musim A is available. Of course, it showed that the target water quality: BOD 2.5mg/1 in Miho A and BOD 3.0mg/1 in Musim A, could be achieved if the small reduction in B unit area was implemented.

Prediction of Water Quality Effect of Watershed Runoff Change in Doam Reservoir (유역유출 변화에 따른 도암댐 저수지 수질 영향 예측)

  • Noh, Hee Jin;Kim, Jung Min;Kim, Young Do;Kang, Boo Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.975-985
    • /
    • 2013
  • In this research, the integrated modeling system by coupling of a watershed model, a reservoir model, and a river model has been constructed in Doam reservoir watershed. Because of domestic climate characteristics, it is inevitable to construct the dam for control of flood, water use, and power production due to the heavy rain in the summer. Especially, when the dam is constructed on the stream for these kinds of purpose, it is necessary to consider this region as one watershed and also to make the integrated system for simulation and management. In this study, SWAT model was constructed for watershed modeling and EFDC-WASP model was constructed for simulating the hydrodynamic and water quality of the reservoir and the downstream in Doam dam watershed. Also, the water quality improvement equipment for demonstration was applied in the upstream part of Doam reservoir, which shows the applicability of the developed integrated modeling system.

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Agricultural Soil Carbon Management Considering Water Environment (수질 환경을 고려한 농경지 토양 탄소 관리 방안)

  • Lee, Kyoungsook;Yoon, Kwangsik;Choi, Dongho;Jung, Jaewoon;Choi, Woojung;Lim, Sangsun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.

Analysis of Water Quality on Distributed Watershed using Topographic Data (공간정보를 이용한 분포형 유역 수질 모의)

  • Ryu, Byong-Ro;Jung, Seung-Kwon;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.897-913
    • /
    • 2004
  • There has been continuous efforts to manage the water resources for the required water quality criterion at river channel in Korea. However, we could not obtain the partial improvement only for the point source pollutant such as, wastewater from urban and industrial site through the water quality management. Therefore, it is strongly needed that the Best Management Practice(BMP) throughout the river basin for water quality management including non-point source pollutant loads. This problem should be resolved by recognizing the non-point source pollutant loads from upstream river basin to the outlet depends on the land use and soil type characteristic of the river basin using the computer simulation by distributed parameter model based on the detailed investigation and the application of Geographic Information System(GIS). Used in this study, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) model is a tool suitable for long term evaluation of the effects of BMPs and can be used for un gauged watershed simulation of runoff and sediment yield. Now applications of model are in progress. So we just describe the limited result. However If well have done modeling and have investigated of propriety of model, well achieve our final goal of this study.