• Title/Summary/Keyword: River water quality

Search Result 2,025, Processing Time 0.035 seconds

Water Quality Similarity Evaluation in Geum River Using Water Quality Monitoring Network Data (물환경측정망 자료를 활용한 금강수계 수질 유사도 평가)

  • Kim, Jeehyun;Chae, Minhee;Yoon, Johee;Seok, Kwangseol
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.75-88
    • /
    • 2021
  • Six locations in the automated monitoring network at the Geum River Basin were selected forthis study. The water quality characteristics at two of the locations in the water quality monitoring network that were identical, or nearby, were examined, and their correlations were evaluated through statistical analysis. The results of the water quality analysis were converted to the water quality index and expressed in grades for comparison. For the data necessary for the study, public data from four years, from 2016-2019 were used and the evaluation parameters were water temperature, pH, EC, DO, TOC, TN, and TP. Results of the analysis showed that the water quality concentrations measured in the automated monitoring network and the water quality monitoring network differed in some measured values, but they tended to register variation in a specified ratio in most of the locations in the network. The analysis of the correlations of the parameters between the two monitoring networks found that water temperature, EC, and DO showed high correlations between the two monitoring networks. The TOC, TN, and TP showed high correlations, with a 0.7 or higher (correlation coefficient r), with the exception of some of the monitoring networks, although their correlations were lower than those of the basic parameters. The water quality index analysis showed that the water quality index values of the automated monitoring network and the water quality monitoring network were similar. The water quality index decreased and the pollution degree increased in the downstream direction, in both networks.

Impact of a Flushing Discharge from an Upstream Dam on the NH3-N Concentrations during Winter Season in Geum River (상류 댐 플러싱 방류가 금강의 겨울철 암모니아성 질소 농도 저감에 미치는 효과분석)

  • Chung, Se Woong;Kim, Yu-kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.609-616
    • /
    • 2005
  • A high ammonia nitrogen ($NH_3-N$) concentration has been recursively observed every winter season in Geum River, which hindered chemical treatment processes at a water treatment plant. A flushing discharge from Daecheong Dam was often considered to dilute $NH_3-N$, but information on the quantitative effect of flushing on the downstream water quality was limited. In this study, the impact of a short-term reservoir flushing on the downstream water quality was investigated through field experiments and unsteady water quality modeling. On November 22, 2003, the reservoir discharge was increased from $30m^3/sec$ to $200m^3/sec$ within 6 hours for the purpose of the experiment. The results showed that flushing flow tends to reduce downstream $NH_3-N$ concentrations considerably, but the effectiveness was limited by flushing amount and time. An unsteady river water quality model was applied to simulate the changes of nitrogen concentrations in response to reservoir flushing. The model showed very good performance in predicting the travel time of flushing flow and the effect of flushing discharge on the reduction of downstream $NH_3-N$ concentrations at Maepo and Geumnam site, but a significant discrepancy was observed at Gongju site.

Analysis of Trophic State Variation of Lake Yongdam in Dam Construction (담수 이후 용담호 영양상태 변동 요인 분석)

  • Yu, Soon-Ju;Chae, Min-Hee;Hwang, Jong-Yeon;Lee, Jea-an;Park, Jong-gyum;Choi, Tae-bong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.360-367
    • /
    • 2005
  • We have performed to analyze the trophic state resulting of Lake Yongdam as a result of water quality and nutrient concentration. Lake Yongdam is artifitial multi-purpose Dam resulting from the floods of 2001. The water quality of Lake Yongdam may affect the status of the Geum river basin including the Daecheong reservoir. It is necessary to understand the trophic state to assess water quality until stability after flooding. Water quality was surveyed using depth and hydraulic condition analysis. Further density flow was estimated for stratification and trophic state of Lake Yongdam by chlorophyll ${\alpha}$ concentration (2001~2004). And Environmental factors on chlorophyll ${\alpha}$ concentration were analyzed statistically. Trophic state was evaluated as the oligotrophic state at the main stream of the reservoir and eutrophic state at the upper stream in 2001, but evaluated as eutrophic state in 2002 and 2003 by TSI of Aizaki. From the results of multiple regression analysis using stepwise method, chlorophyll ${\alpha}$ concentration was shown to be very significant when nutrient concentration is high upon initial filling of the Dam. Chlorophyll ${\alpha}$ concentration varied according to sample site, season and year. Concentration were high in the upper stream of Lake Yongdam 4, algae bloom in these watershed were affected by location and high nutrient levels in the summer season which have in turn increased phytoplankton bloom into the reservoir.

Water Quality Modeling and Environmantal Capacity in the Seom River Basin (섬강유역 환경용량 및 수질 Modeling)

  • 허인량;오근찬;최지용
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.80-86
    • /
    • 1998
  • Seom River was major branch of Namhan river, consist of primary basin that Wonjoo-city, Hoingsung-gun and primary contamination source was sewage from human lives. This study was evaluated production contamination loading of each branch basin and water quality grade and water quality simulation by QUAL2E to provide efficient contaminations source control. Rusult of survey, production loading of BOD, T-N, T-P were 26,591 kg/day, 4,560 kg/day, 731 kg/day resectively. Water quality analysis in 17 points of main stream were appeared that 1st grade(BOD 1 mg/l under) was 6 point, 2nd grade was 9 point and 3rd grade was 2 point. And result of water quality analysis for branch steram, first grade was evaluated 68.7%. Based of field data, calibration and verification result were in good agreement with mesured value within coefficient of variance were from 2.59% to 18.73%, from 6.39%, to 28.46%, respectively.

  • PDF

Distribution of the Organic Contents in Reservoir Sediment (호소 퇴적물의 유기물 분포)

  • Hwang, Jong Yeon;Han, Eui Jung;Yu, Soon Ju;Yoon, Young Sam;Cheon, Se Eug;Kim, Tae Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.95-107
    • /
    • 1999
  • The organic contents of reservoir sediment can offer a good indicator to events in history of lake life. Reservoir sediment have many information of the past and future fingerprint about development direction of life cycle in biological animals. So, in this study we made an effort to know the distribution of organic contents in Daecheong reservoir sediment. Items for this investigations are such as follows: Loss on ignition, COD, Organic carbon, TN, TP, heavy metal contents, Loss on ignitions were determined in 6.44~15.91% and COD were determined in 1.606~6.859%, organic carbon in 1,077~3.743%. Contents of TP and TN were in the range of 0.083~0.757%, and 0.645~0.926%, respectively.

  • PDF

Water Quality Management of Kyung-an River Basin (경안천 유역의 수환경 관리방안)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.469-472
    • /
    • 2002
  • This study was conducted to show how to manage the water quality of Kyung-an river. The water quality and hydrologic data were obtained at the main river and branch streams in Marc $h{\sim}April$ 1998. First of all, we surveyed the contribution of branches for the pollution of water quality at Kyung-an river. It was in order of Kongiam(25.5%)>Yong-in Pollutant Treatment Complex (15.26%)^gt;Shin-won(13.99%)>Buen(11.86%)>Yangji(8.68%)>Yooun(7.43%)>Kwang-ju Pollution Treatment Complex(5.50%)>Osan(5.04%). The hydrological model using mass balance and BOD reduction formula suggested that if the quality of water Yoo-un and Shinn-won stream (branch streams of Kyung-an River) which is lowest in the basin is controlled adequately and outlet water from Yong-in pollutant treatment complex is adequately treated, the quality of Kyung-an river will be improved by 90% compared to current level.

  • PDF

Evaluation of Water Quality in the Keum River using Statistics Analysis (통계분석 기법을 이용한 錦江水系의 水質評價)

  • Kim, Jong-Gu
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1281-1289
    • /
    • 2002
  • This study was conducted to evaluate water quality in the Keum River using multivariate analysis. The analysis data in Keum river made use of surveyed data by the ministry of environment from January 1994 to December 2001. Thirteen water quality parameter were determined on each sample. The results was summarized as follow; Water quality in the Keum River could be explained up to 71.39% by four factors which were included in loading of organic matter and nutrients by the tributaries (32.88%), seasonal variation (16.09%), loading of pathogenic bacteria by domestic sewage of Gapcheon (13.39%) and internal metabolism in estuary as lakes(9.03%). For spatial variation of factor score, four group was classified by each factor characterization. Station 1 and 2 was influenced by Daechung dam, station 3 was affected by domestic sewage of Gapcheon, station 10~12 was affected by estuary dyke and the rest station. The result of cluster analysis by station was classified into four group that has different water quality characteristics. In monthly cluster analysis, three group was classified according to seasonal characteristic. Also, in yearly cluster analysis, three group was classified. It is necessary to control the pollutant loadings by Gapcheon inflow domestic sewage in Daejeon city for the sake of water quality management of Keum river.

The Evaluation of River Naturalness for Biological Habitat Restoration : II. Application of Evaluation Method (하천의 생물서식처 복원을 위한 하천자연도평가 : II. 평가방법의 적용)

  • Park, Bong-Jin;Shin, Jong-Iee;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • The investigation and evaluation of river naturalness was conducted for sample rivers-Hongchungang, Mihochun, Naesungchun - using the method from previous paper 'The Evaluation of River Naturalness for Habitat Restoration : I. Proposal of Evaluation Method'. As a result, Hongchungang and Naesungchun, Mihochun showed 2$^{nd}$ Grades with averaged point 1.92, 1.43, and 2.31. Also comparison and examination of the relationship between water quality and river naturalness shows a little relation with coefficient of correlation 0.575. This result means that the evaluation of river naturalness can be possibly used as index to evaluate river ecology, from a different standpoint with water quality.oint with water quality.

Biological Assessment of Water Quality by Using Epilithic Diatoms in Major River Systems (Geum, Youngsan, Seomjin River), Korea (돌말(Epilithic Diatom) 지수를 이용한 국내 주요 하천(금강, 영산강, 섬진강)의 생물학적 수질평가)

  • Hwang, Soon-Jin;Kim, Nan-Young;Won, Doo Hee;An, Kwang Kuk;Lee, Jae Kwan;Kim, Chang Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.784-795
    • /
    • 2006
  • The purpose of this study was to assess biological river water quality by using epilithic diatoms at 40 selected sites in Geum, Youngsan, and Seomjin River systems. The sampling and analyses were performed during three seasons including January, April and June in 2005. Various water quality parameters also were analyzed. We attempted to classify the water quality condition by epilithic diatom indices (DAIpo and TDI) with the results of corresponding analyses of various chemical water quality parameters. A five class system was delivered to describe the water quality condition ranged from "very good" to "very poor." We also proposed a way of classifying water quality condition by combining two diatom indices of DAIpo and TDI. Our results showed that biomass of epilithic diatoms varied not only seasonally but spatially; it was not likely that winter diatoms represent average water quality condition, due to high concentration of nutrients. Water quality status assessed by diatom indices was generally worse than that assessed by BOD, indicating that BOD standard likely underestimates the biological condition of the water body. Importantly, nutrient-based diatom index (TDI) generally overestimated organic matter-based index (DAIpo) at most study sites, indicating that diatoms in studied rivers were likely more affected by nutrients than organic matter. Thus, management strategy to improve river water quality in Korea is suggested to emphasize more on the nutrients than organic matters.

Evaluation of Water Quality Characteristics in the Nakdong River using Statistical Analysis (통계분석을 이용한 낙동강유역의 수질변화 특성 조사)

  • Choi, Kil Yong;Im, Toe Hyo;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1157-1168
    • /
    • 2012
  • In this study, we assess changes in water quality trends over time based on certain control measurements in order to identify and analyze the cause of the trend in water quality. The current water pollution in the Nakdong River was analyzed, as it suggests that the significant changes in water quality have occurred in between 2006 and 2010. Based on monthly average data, we have examined for trends of the Nakdong River watershed in water temperature, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (TN), and Total Phosphorus (TP). Moreover, we have investigated seasonal variation of water quality of sites within the Nakdong River Basin by implementing further analyses such as, Correlation Coefficient, Regression Analysis, Hierarchical Clustering Method, and Time Series Analysis on SPSS. Geology and topography of the watershed, controlled by various conditions such as, climate, vegetation, topography, soil, and rain medium, have been affected by the non-homogeneity. Our study suggests that such variables could possibly cause eutrophication problems in the river. One possible way to overcome this particular problem is to lay up a ship on the river by increasing the nasal flow measurement of the Nakdong River during rainy season. Moreover, the water management requires arranging the measurement of the flow in order to secure the river while the numerous construction projects need to be continuously observed. However, the water is not flowing tributary of the reason for the timing to be flowing in a natural state of river water and industrial water intake because agriculture. Therefore, ongoing research is needed in addition to configuration of all observations.