• Title/Summary/Keyword: River system

Search Result 2,305, Processing Time 0.03 seconds

An Implementation of Expression System and Model for Automatic Creation of Flooding Area in the river (하천범람 영역 자동생성 모델 및 표출 시스템 구현)

  • Choi, Eun-Hye;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.654-660
    • /
    • 2012
  • The goal of this paper is to calculate flood elevation by applying temporal distribution of rainfall through HEC-RAS(Hydrologic Engineering Center's River Analysis System) and to automatically create areas of flooding by a user-defined spatial model based on GIS using calculated values of flood elevation and detailed data of topography. Accuracy of topographic data is the most important factor because of deeply changing analysis results of flooding areas of a river. Therefore, this paper suggests a method of attributive and spatial data construction based on the GIS using UIS(Urban Information System, river-related reports, and hydrologic information. Also, we implement an expression system to provide analysis results extracted from the proposed model.

A Study on the Improvement of RIMGIS for an Efficient River Information Service (효율적인 하천정보 서비스를 위한 RIMGIS 개선방안 연구)

  • Shin, Hyung-Jin;Chae, Hyo-Sok;Hwang, Eui-Ho;Lim, Kwang-Suop
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.15-25
    • /
    • 2013
  • The RIMGIS(River Information Management GIS) has been developed since 2000 for public service and practical applications of related works after the standardization of national river data such as the river facility register report, river survey map, attached map, and etc. The RIMGIS has been improved in order to respond proactively to change in the information environment. Recently, Smart River-based river information services and related data have become so large as to be overwhelming, making necessary improvements in managing big data. In this study a plan was suggested both to respond to these changes in the information environment and to provide a future Smart River-based river information service by understanding the current state of RIMGIS, improving RIMGIS itself, redesigning the database, developing distribution, and integrating river information systems. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability of RIMGIS. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system capable of adapting to the changes of a river management paradigm.

Establishment of GIS River Section for Water Flow Management (하천유량관리를 위한 GIS 하도단면 구축)

  • 최철관;김상호;배덕효;한건연
    • Spatial Information Research
    • /
    • v.8 no.1
    • /
    • pp.131-140
    • /
    • 2000
  • The systematic data management system in the area of river flow analysis has not yet constructed, even though the need is evident due to the complicated process of tremendous input/output data in the modeling study and the importance of visualization of spatial flow variation. The objectives of this study are to suggest the method for constructing the NGIS-based river database based on contour, river, elevation, boundary layers and river cross sections and to provide the algorithm for interpolating equi-distance river cross section points. The selected study area is the main Han River starting from Paldang dam site to Indogyo bridge. The constructed database will be useful for the scientific water flow management system in the study area.

  • PDF

Numerical Simulation of Water Quality Enhancement by Removal of Contaminated Bed Material (하상오염물 제거에 의한 수질개선효과 수치모델링)

  • Lee, Nam-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.349-357
    • /
    • 2011
  • This study has an objective to estimate effect on water-quality enhancement by removal of contaminated river-bed material using a two-dimensional numerical modeling in the Seonakdong River, the Pyunggang River and the Maekdo River. RMA2 and RMA4 models were used for flow and contaminant transport simulation, respectively. After the analysis of the effects of flow restoration plan for the Seonakdong River system made by Lee et al (2008), simulation have been performed about scenarios which contains operations of the Daejeo Gate, the Noksan Gate, the Makdo Gate (on planning), and the Noksan Pumping Station. Because there is no option for elution from bed sediment in the RMA4 model, a simple technique has been used for initial condition modification for elution. The analyses revealed that the effect on water quality improvement due to dredging of bed sediment seemed to be less than 10 % of the total effect. The most efficient measure for the water quality improvement of the river system was the linked operation of water-gates and pumping station.

Study on Water Resources Allocation in the Lancangjiang River Basin of China

  • Ying, Gu;Heng, Liu;Jingnan, Liu;Sihua, Lei
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.36-44
    • /
    • 2006
  • Based on water resources availability and development condition of the Lancang River, as well as considering the international river water resources characters, the paper put forwarded an integrated allocation way of the water resources of Lancang River Basin. According to the basic rules of equitable and suitable utilization of water resources of international rivers, water resources demand for domestic, industrial, irrigation and ecosystem system, and principles of society stabilities and the food safety etc, an index system of Lancang River water resources allocation was set up. Two levels scheme of Lancang River water allocation are proposed. First level is for an international water, which primarily to analysis the water quantity at the national boundary. Second level is for provincial water allocation among Qinghai, Yunnan provinces and Tibetan Autonomous Region. In the allocation schemes, the water resources development of Lancang River Basin at different scenarios and the related water allocation in different years and seasons were analyzed. A discharge to some cross sections of the river and a total amount water quantity for each district has been given as well.

  • PDF

MOSIM NETWORK FLOW MODELING FOR IMPROVING CRITICAL HABITAT IN PLATTE RIVER BASIN (플랫강 유역의 위험에 처한 서식지 보호를 위한 MODSIM 하천 네트워크 흐름모의)

  • Lee, Jin-Hee;Kim, Kil-Ho;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2039-2043
    • /
    • 2007
  • Like other major river basin systems in the West of the United States the Platte River Basin are faced with the challenges of allocating more water for plant and animal species. A part of the Central Platte River was designated as critical habitat for the whooping crane in 1978. The water allocation system in the Platte River Basin is dominated by the Prior Appropriation Doctrine, which allocates water according to the priorities based on the date of water use. The Platte River Basin segregated into five subregions for purpose of analysis. 24 years of historic records of monthly flow and all the demands were complied. The simulation of river basin modeling includes physical operation of the system including water allocation by water rights and interstate compact agreements, reservoir operations, and diversion with consumptive use and return flow. MODSIM, a generalized river basin network model, was used for estimating the timing and magnitude of impacts on river flows and diversions associated with water transfers from each region. A total of 20 alternatives were considered, covering transfers from each of the five regions of basin with several options. The result shows that the timing and availability of augmented water at the critical habitat is not only a function of use by junior appropriators, but also of river losses, and timing of return flows.

  • PDF

Establishment of Watershed Management System for Efficient Water Management in the Yeongsan and Seomjin River Basin (영산강·섬진강 수계 효율적 물관리를 위한 유역관리 시스템 구축)

  • Joung, Hee-Joung;Jung, Jae-Woon;Kim, Kap-Soon;Park, Ha-Na;Lim, Byung-Jin;Huh, Yu-Jeong;Lee, Jun-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.200-204
    • /
    • 2012
  • BACKGROUND: Recently, the project for improvement of water quality and preservation of the Yeongsan and Seomjin river basin was actively promoted. However, the publicity for many results of the project is not actively done, thus they are rarely used. Furthermore, there are not sufficient information about the projects preformed by other research institutions. Therefore, the watershed management system for efficient water management is needed in the Yeongsan and Seomjin river basin. CONCLUSION: Firstly, establishment of the Yeongsan and Seomjin river basin management research center, Secondly, construciton of wed-based water management research network. These results will serve as a basic data for efficient water management.

Development of WRAP-SALT for Quantitative Analysis of Water Supply Capabilities considering Water Quality (수질을 고려한 수자원 공급의 정량적 분석을 위한 WRAP-SALT 개발)

  • Lee, Chi-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.58-58
    • /
    • 2011
  • The Texas Commission on Environmental Quality(TCEQ) WAM(Water Availability Modeling) System consists of the generalized Water Rights Analysis Package(WRAP) river/reservoir system water management simulation model, 22 sets of WRAP hydrology and water rights input files for the 23 river basins of Texas, geographic information system tools, and other supporting databases. The WRAP/WAM modeling system, as routinely applied since the late 1990s, has not included consideration of water quality. Recently developed WRAP-SALT(Water Rights Analysis Package) is designed primarily for computing concentration frequency statistics and supply reliability indices at locations of interest in a river system for alternative water development and management scenarios. Though motivated primarily by natural salt pollution, WRAP-SALT water quality modeling features are applicable to essentially any conservative water quality constituent. The Brazos River studies discussed in this paper focus on total dissolved solids, though the available observed data also includes chloride and sulfate which can be modeled as individual constituents. The WRAP-SALT salinity input file contains loads or concentrations of salinity inflows during each month of the hydrologic period-of-analysis and reservoir storage at the beginning of the simulation. The WRAP-SALT model computes salt loads and concentrations for each control point of a river/reservoir system for inflows and outflows during the month and end-of-month reservoir storage for each month of the hydrologic period-of-analysis, for given loads entering the system. River reaches connect control points. The mass balance algorithms proceed from upstream to downstream, with outflow from one river reach contributing to inflow to the next downstream reach. In a given month, for each control point in sequence, the inflow loads are first computed. Loads and concentrations of outflows and reservoir storage at the control point are then determined. Complete mixing during the month is assumed at locations without reservoir storage.

  • PDF

Evaluation of Pollutants Removal for Treated Wastewater Effluent and River Water by Meandering Constructed Wetland System (하수처리수와 하천수를 대상으로 한 생태적 수질정화 비오톱 시스템의 오염물질 제거에 대한 수질정화 평가)

  • Lee, Sang-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • Field experiment was performed from June 2010 to July 2011 to evaluate pollutants removal efficiency in the constructed wetland system for the treated wastewater and the river water. The wetland systems were constructed near Gyungan river. Two different systems with meandering shape were compared for seasonal base and operational period base. Several kinds of aquaculture are planted through the corridor of wetland system. Average removal rate of BOD, T-N and T-P for A system were 15.8%, 14.8% and 26.5%, respectively. Average removal rate of BOD, T-N and T-P for C system were 23.5%, 27.8% and 10.6%, respectively. The effluent from two wetland systems often exceeded effluent water quality standards for wastewater influent, however effluent water quality standards for river water. However, the wetland system can be useful to treat polluted river water and effluent from wastewater plant. Removal rate of pollutants in seasonal variation was the highest in summer for BOD and T-N, however the removal rates of T-P were higher in spring and autumn than in summer.