• Title/Summary/Keyword: River implementation projects

Search Result 12, Processing Time 0.032 seconds

Improvement of Detailed Indicators and Application of Methodology for Post-Evaluation of National River Project (국가하천사업 사후 평가를 위한 세부지표 개선 및 방법론 적용)

  • Jang, Chorok;Jang, Moon Yup;Song, Juil;Kim, Han Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.188-196
    • /
    • 2021
  • Korea has invested heavily in projects related to national rivers, but there is no evaluation technique and system to manage river projects that can evaluate the effectiveness of the river projects after they are completed. Their absence leads to the inability of information on river construction sections, analysis of project effects, and benchmarking between projects. This may cause over-budget, overlapping investment problems due to the implementation of similar projects in the same section, and incorrect business elements may be repeatedly utilized. In order to solve this shortcoming, this study developed river project evaluation techniques and a river project (construction) management system. The development of evaluation techniques enables comparison and analysis between projects and can be utilized in establishing maintenance plans. The system can also provide inquiry of construction information, visualization of construction, and management of performance items. In this study, the evaluation techniques developed through prior research were modified and supplemented, and the effectiveness was verified by applying them to national river projects in A river and B river. It is expected that the evaluation techniques and system utilization measures presented will increase the work efficiency of river projects and enhance the efficiency of river projects.

Estimation of Design Flood Discharge by Areal Ratio for Ungauged Basin (면적비를 적용한 미계측유역에서의 설계홍수량 산정방안)

  • Lee, Jiho;Park, Jaebeom;Song, Yangho;Jun, Hwandon;Lee, Jungho
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.335-344
    • /
    • 2017
  • In this study, We proposed a method to estimate the design flood by area ratio in an ungauged basin. For that, the discharge parameters was determined by calibration of observed data at the watershed outlet and then peak flow was estimated by area ratio. In order to verify suggested method, peak flow was compared the observed discharge of the small river basin and the design flood discharge of river implementation projects. The results were summarized as follows. As a result of comparing the discharge by the area ratio and observed discharge, the difference of peak flows were analysed 14 ~ 25%. When the discharge calculated with area ratio of small river was compared with the design flood discharge of river implementation projects, the relative error was analyzed to be less than 20%. It means that suggested method in this study is appropriate.

Flood Control Measures of the nakdong River Basins (낙동강유역 홍수방지대책 제언)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.35 no.4
    • /
    • pp.48-51
    • /
    • 2002
  • Due to locally torrential downpours which shows Increasing trend, high tide of the southern sea of Korea and etc. submerged and Inundated districts at the lowlands of Nakdong River Basins has been Increasing year by year In order to protect flood hit, it is necessary to make an early implementation of flood control dam and other flood protection works according to Nakdong River Comprehensive Development Project. In addition to the large scale comprehensive projects, local key measures, such as lowland development control, embankment reinforcement, leakage protection, maintenance and management of facilities, increase in pumping station, will be highly effective.

  • PDF

Improvement and Implementation to Enhance the Effectiveness of the Total Pollution Load Control System (수질오염총량관리제 실효성 제고를 위한 제도개선 및 추진 방향)

  • Seok-Gyu Kim;Seung-Young Oh;Su-Young Park;Eun-Hye Na;Yong-Seok Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.343-355
    • /
    • 2023
  • After the implementation of the total pollution load control system, the effect of improving river water quality by expanding investments in basic environmental facilities, inducing operational efficiency, and reducing the load of various pollutants was clear. However, since the implementation of the system, the management of non-point pollutants has been neglected; management focused on specific substances (biochemical oxygen demand (BOD) and total phosphorus (T-P)) and lacked specific cause analysis and action plans, failed to establish a relationship between water quality and pollution load, failed to reflect stakeholder demands for river water quality management, and failed to apply technical conditions. Therefore, to overcome the limitations raised and achieve a practical and efficient advanced total pollution system, the current system was partially improved and will continue to be improved. This study analyzed the performance and limitations of the total pollution system and introduced recent improvements and the contents that are being improved. The main contents included reducing emissions and reduction monitoring, using water quality tele-monitoring system (TMS) data and self-measurement data, adding population-inducing facilities, and adjusting regional development projects from 20 to 30 multi-family housing units, currentizing each pollutant source according to the roadmap. If the system is improved in a developmental direction and responds to various changes, it will be a more practical and effective policy.

Quantitative Analysis of Human Impact on River Runoff in the Laohahe Basin through the Conceptual Xin'anjiang Model

  • Ren, Liliang;Vu, Van Nghi;Yuan, Fei;Li, Chunhong;Wang, Jixin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.15-21
    • /
    • 2007
  • Due to a decreasing tendency of river runoff in the Laohahe River basin in North China, quantitative analysis was made with the aid of the conceptual Xinanjiang model under the background of nature climate variability as well as human-induced climate change according to the long-term observational hydrometeorological data. In the past, the human effect on surface water resources was estimated by investigating the impact of human activities on each item in the equation of water balance, so as to calculate water quantity of each item in the original natural status. It seems to be clear conceptually. It is appropriate just for the case of direct impact, such as water transfer from one basin to another, water storage by various scales of hydraulic projects, besides a huge amount of investigation and indeterminate statistics data when applied in practice. It is difficult for us to compute directly water consumption due to the implementation of measures for soil conservation, the improvement of farming techniques in agriculture, the growth of population in towns and villages, and the change of socioeconomic structure. In view of such situation, the Xinanjiang model was used to separate human impact from the climatic impact on water resources. Quantitatively human activity made river runoff decrease by 1.02, 50.67, 58.06 mm in 1960's, 1970's, 1980's, respectively, while by 97.2 mm in 1990's in the sense of annual average in the Laohahe River basin.

  • PDF

Follow-up Monitoring & Adaptive Management after Ecological Restoration for the Stream - Focused the Hakui Stream in Anyang City - (생태하천 복원 후 모니터링과 적응관리 - 안양시 학의천을 중심으로 -)

  • Choi, jungkwon;Choi, mikyoung;Choi, cheolbin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.85-95
    • /
    • 2015
  • Recent years, nationwide projects for ecological restoration are implemented with emerging issues on the stream ecosystem. In order to enhance effectiveness of the ecosystem restoration and reduce negative impact, the appraisal of effectiveness through the follow-up monitoring and the adaptive management process are executed in consecutive phase. In this study, planning phase, monitoring and adaptive management in Hakui stream which is part of An Yang stream restoration project is introduced as representative ongoing case of effective adaptive management. The aim of this study is to verify the adaptive management process and suggest direction of effective restoration. Restoration project of Hakui stream resulted in increasing number and diversity of species (vegetation, fish, bird, invertbrates, amphibian and reptilia) according to monitoring from 2004 to 2013, and enhancing natural river landscape by evaluation of river naturalness among 2001(before restoration), 2007 (after), 2015 (recent). However, excessive vegetation expansion or sediment deposition on channel over time caused unexpected results such as terrestrialization or degradation of habitats. Adaptive management action such as removing disturbance species (Humulus japonicus)(2007), coppicing willow (2007), release of march snail (2007), creation of wetland (2014) were implemented based on monitoring results. And then appraisal of management action was discussed.

Development of Integrated Water Resources Evaluation Index (통합수자원평가지수의 개발)

  • Lee, Dong-Ryul;Choi, Si Jung;Moon, Jang Won
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.10
    • /
    • pp.1017-1028
    • /
    • 2013
  • The purpose of this research is to develop an Integrated Water Resources Evaluation Index (IWREI) which can used to assess the performance of water resources projects in a regional perspective focusing on three major sectors including water use, flood, and river environment in water resources policies. The IWREI is estimated by integrating the Water Use Vulnerability Index (WUVI), the Flood Vulnerability Index (FVI), and the River Environment Vulnerability Index (REVI) which represent the vulnerability in each sector. These indices consist of total 26 indicators selected from the pressure indicators representing the causes of damages in water use, flood, and river environment, the state indicators and the response indicators. The estimated index describes the vulnerability and effectiveness of policies with five levels: Low, Medium Low, Medium, Medium High, and High. The results of evaluating total 115 hydrological units in Korea using the WUVI, FVI, REVI, and IWREI indicate that the project effectiveness in water resources policies is clearly verified by the improved index results compared to the past (early 1990s). Regional vulnerability and evaluation indices developed in this research could be used to establish goals of water resources policy and to select priority regions for project implementation.

Impact on Introduction of the Alien Plants by Road Development Projects (도로개발 사업이 외래식물 유입에 미치는 영향)

  • Chu, Yunsoo;Kim, Jung-Kwon;Lee, Hyohyemi
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.156-168
    • /
    • 2017
  • Linear development such as road and railway construction is considered to be an important factor in the dipersion agent of alien species. The purpose of this study is to investigate the effect of road project implementation on the introduction of alien plants. We selected the roadworks that have been completed or completed by more than 70% of the projects in the Han River basin environment agency. The alien plant data were divided into five phases: pre-construction (P0) and construction (P25, P50, P75, P100) according to the annual process rate. As the construction progresses, the naturalization rate, the urbanization index and the tendency of the number of exotic plants increase. Especially, alien plants were introduced rapidly at the beginning of the construction period, and the introduced species continued to appear until the construction was completed. Therefore, it is necessary to minimize the introduction of ailen plants by concentrating management of embankment process and the vegetation restoration process at the beginning of roadworks.

Parameter Estimation of a Distributed Hydrologic Model using Parallel PEST: Comparison of Impacts by Radar and Ground Rainfall Estimates (병렬 PEST를 이용한 분포형 수문모형의 매개변수 추정: 레이더 및 지상 강우 자료 영향 비교)

  • Noh, Seong Jin;Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1041-1052
    • /
    • 2013
  • In this study, we estimate parameters of a distributed hydrologic model, GRM (grid based rainfall-runoff model), using a model-independent parameter estimation tool, PEST. We implement auto calibration of model parameters such as initial soil moisture, multipliers of overland roughness and soil hydraulic conductivity in the Geumho River Catchment and the Gamcheon Catchment using radar rainfall estimates and ground-observed rainfall represented by Thiessen interpolation. Automatic calibration is performed by GRM-MP (multiple projects), a modified version of GRM without GUI (graphic user interface) implementation, and "Parallel PEST" to improve estimation efficiency. Although ground rainfall shows similar or higher cumulative amount compared to radar rainfall in the areal average, high spatial variation is found only in radar rainfall. In terms of accuracy of hydrologic simulations, radar rainfall is equivalent or superior to ground rainfall. In the case of radar rainfall, the estimated multiplier of soil hydraulic conductivity is lower than 1, which may be affected by high rainfall intensity of radar rainfall. Other parameters such as initial soil moisture and the multiplier of overland roughness do not show consistent trends in the calibration results. Overall, calibrated parameters show different patterns in radar and ground rainfall, which should be carefully considered in the rainfall-runoff modelling applications using radar rainfall.