• Title/Summary/Keyword: River flood

Search Result 1,531, Processing Time 0.027 seconds

Application of Flood Control Reservoir and Effectiveness of Water Quality Improvement in Yeongsan River by EFDC Model (EFDC모델에 의한 홍수조절지 활용과 영산강 수질개선효과)

  • Kim, Jeong Soo;Park, Sung Chun;Park, Su Ho;Lee, Woo Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.441-441
    • /
    • 2021
  • 우리나라의 홍수조절용댐은 총 5개소로 영산강유역에 두 개소와 한강유역에 세 개소가 있다. 한강유역에 있는 세 개소의 홍수조절지용댐은 한강상류의 북한지역에서 발생하는 집중호우에 대비하기 위한 댐으로, 임진강 하류지역의 수해방지를 위한 한탄강댐과 군남홍수조절지(군남댐)가 있으며 북한강 하류와 수도권의 홍수예방을 위한 평화의 댐이 있다. 영산강유역에 있는 두 개소의 홍수조절지는 2006년에 수립한 영산강치수종합대책에서 계획이 수립된 시설로 2011년 4대강 사업의 일환으로 설치하여 K-water에서 운영 중에 있다. 4대강 사업 이전의 영산강유역은 홍수량을 조절할 수 있는 홍수조절용량이 전무했던 실정으로 하도에서 홍수량의 전량을 수용해야했던 홍수에 매우 취약한 하천이었다. 그러나 4대강 사업을 통하여 영산강유역의 4대호를 비롯한 농업용댐의 숭상을 통한 홍수조절용량의 확보와 더불어 나주천변저류지와 담양홍수조절지, 화순홍수조절지를 설치하여 홍수로부터 상대적으로 안전한 하천으로 변모할 수 있었다. 그러나 영산강유역의 다른 하나의 과제는 여전히 남아있다. 우리나라의 하천 중에서 가장 수질이 악화되어 있는 하천이라는 불명예이다. 홍수조절지는 1년 중 3개월에 해당하는 홍수기에 사용할 수 있는 시설로 1년 중 9개월에 해당하는 비홍수기에는 홍수조절지의 효율적인 공간활용을 위하여 주민지원사업 등 다각도로 고민하여 사용하고 있으나 하천 외적인 문제를 수용하는 범주에 머무르고 있다. 하천이 가지고 있는 문제점을 다소라도 해소할 수 있는 목적으로 사용될 수 있다면 하천 외적인 문제를 수용하는 것 보다 하천 내적인 문제를 해소하는 목적으로 사용하는 것이 보다 바람직할 것으로 판단된다. 이를 위하여 영산강의 내적인 가장 큰 문제점은 수질악화로 인한 수질개선이라 할 수 있다. 따라서 홍수기로 한정되어 사용하는 홍수조절지를 해당하천의 내적인 문제를 다소라도 해소할 수 있는 공간으로 비홍수기에 기여할 수만 있다면 비홍수기의 활용목적을 확대하여 다목적조절지로의 변모가 필요하다고 판단한다. 따라서 본 연구에서는 영산강유역에 있는 담양홍수조절지와 화순홍수조절지의 두 개소 홍수조절지를 활용하여 영산강 수질개선에 기여할 수 있는 정도를 파악하였다. 비홍수기에 유출량의 일부를 조절지에 담수해 두었다가 수질개선 목적의 희석수로 방류하는 시나리오를 마련하여 시나리오별로 영산강의 수질개선효과를 분석하여 제시하였다. 수질개선효과를 분석하기 위하여 EFDC모델을 구축하고 모델 수행을 위한 시나리오는 조절지의 담수율과 방류량 그리고 조절지의 관리수질조건 등을 이용하여 작성하고 수질예측 결과에 따라 TOC, CHl-a, T-P 수질항목을 대상으로 수질개선효과를 분석하여 제시하였다.

  • PDF

Dam Break Analysis with HEC-HMS and HEC-RAS (HEC-HMS와 HEC-RAS를 이용한 댐 붕괴 해석)

  • Hong, Seung-Jin;Kim, Soo-Jun;Kim, Hung-Soo;Kyung, Min-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.347-356
    • /
    • 2009
  • This study simulates the dam break situation by a probable maximum precipitation of Soyang-River Dam using HEC-HMS model and HEC-RAS model and compares the simulated results. The probable maximum precipitation was calculated using the flood event of the typhoon Rusa occurred in 2002 and using the mean areal precipitation of the Gangreung region and the moisture maximization method. The estimated probable maximum precipitations were compared for the duration of 6, 12, 18, and 24 hrs and were used as input data for the HEC-HMS model. Moreover, the inflow data calculated by HEC-HMS were utilized as ones for HEC-RAS, and then unsteady flow analysis was conducted. The two models were used for the dam break analysis with the same conditions and the peak flow estimated by HEC-HMS was larger than that of the HEC-RAS model. The applicability of two models was performed from the dam break analysis then we found that we could simulate more realistic peak flow by HEC-RAS than HEC-HMS. However, when we need more fast simulation results we could use HEC-HMS. Therefore, we may need the guidelines for the different utilizations with different purposes of two models. Furthermore, since the two models still include uncertainties, it is important to establish more detailed topographical factors and data reflecting actual rivers.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

Spatial Distribution Patterns and Planar Geometric Characteristics of Vegetated Bars in the Naesungcheon Stream (내성천 식생사주의 공간적 분포 유형과 평면 기하 특성)

  • Jiwon Ryu;Eun-kyung Jang;Un Ji
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.3
    • /
    • pp.90-99
    • /
    • 2024
  • This study classified spatial distribution patterns of vegetated bars in the Naesungcheon Stream, defined universally applicable planar geometric variables, and quantified characteristics of dominant vegetated bar distribution forms. The analysis identified four primary types of spatial distribution, with two types (vegetated alternate/point bars and vegetated floodplains with single or multi-vegetated bars) accounting for more than 90% of the study area. Study results indicated that relatively large vegetated bars tended to be widely spaced or distributed in combination with multiple smaller vegetated bars that were overlapped in the Naesungcheon stream. Quantified spatial distribution characteristics of vegetated bars derived from this study could be used as essential basis information for vegetation management in rivers similar to the Naesungcheon Stream. Additionally, analysis results for planar geometric variables and spatial distribution forms are expected to facilitate experimental designs that mimic river conditions in flood management and ecohydraulic studies, contributing to the interpretation of complex characteristics of interactions between vegetated bars, flow, and bed changes.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model (CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토)

  • Jang, Eun Kyung;Ji, Un;Kwon, Yong Sung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2211-2221
    • /
    • 2013
  • During the four river restoration project, several weirs were constructed in the four rivers to prevent drought and flood, to improve water quality, and to manage water resources. However, due to the weir construction, bed changes are produced in the upstream channel of installed weirs because the incoming flow velocity is reduced and sediment transport capacity is also lowered. Especially, since the Haman Weir is located in the lowest downstream section among newly installed weirs in Nakdong River, bed change and sedimentation problems are expected due to the mild slope and reduced velocity. Therefore, numerical simulation was performed to analyze flow and bed changes in the upstream channel of Haman Weir and to evaluate quantitatively sediment control methods for bed stabilization using CCHE2D model. As a result of flow and bed change simulation after installation of Haman Weir, the flow velocity at the initial condition was faster than the final bed condition with the specific simulation time and it was represented that the locations where bed changes were great were identical for all modeling conditions of flow discharge. In case of 4.5 m of water level lowered from 5.0 m of the management water level at Haman Weir for bed stabilization, the flow velocity was generally faster than the case of the management water level and the continuous erosion was developed at the most narrow channel section as the applied discharge and simulation period were increased. The channel width extension at the most narrow channel section was proposed in this study to prevent and stabilize continuos bed erosion. As a result of numerical analysis, there was no bed erosion after channel width extension and it was presented that the channel geometry extension was effective for bed stabilization at Haman Weir.

Topographical Change Monitoring of the Sandbar and Estimation of Suspended Solid Flux in the Nakdong River Estuary - Focused on Jinudo - (낙동강 하구역 사주지형 변동과 부유사(SS) 수송량 산정 - 진우도를 중심으로 -)

  • Lee, I.C.;Lim, S.P.;Yoon, H.S.;Kim, H.T.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.70-77
    • /
    • 2008
  • In this study, to establish countermeasure from marine casualties as a basic study fur long-term prediction of topographical change around Jinudo in the Nakdong river estuary, spatio-temporal topographical change monitoring was carried out. Also, in order to estimate the deposition variations concerning SS (Suspended Solid) flux which moved at St.S1 during neap and spring tide, respectively. From the topographical monitoring, it was found that the annual mean ground level and deposition rate were 141 mm and 0.36 mm/day and all parts except the northern part of Jinudo had the active topographical changes and a tendency to annually deposit. From vertical distribution of SS net fluxes, $SS_{LH}$ (latitudinal SS net flux) during spring tide overall flows average 28 $kg/m^2/hr$ (eastward), and $SS_{LV}$ (longitudinal SS net flux) flows average 11.1 $kg/m^2/hr$ (northward). And, $SS_{LH}$ overall flows average 4.8 $kg/m^2/hr$ (eastward), and $SS_{LV}$ flows average 1.5 $kg/m^2/hr$ (northward) during neap tide similar with spring tide. The depth averaged values of the latitudinal and longitudinal SS net fluxes during spring tide were approximately 6 times higher than those during neap tide. As result of, it was considered that topographical change of southern part of Jinudo was affected by resuspension of bottom sediments due to strong current in bottom layer during flood flow.

  • PDF

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF

Characteristics of Mass Transport Depending on the Feature of Tidal Creek at Han River Estuary, Gyeong-gi Bay, South Korea (경기만 염하수로에서의 비정규 격자 수치모델링을 통한 조간대 조수로의 고려에 따른 Mass Transport 특성)

  • Kim, Minha;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.41-51
    • /
    • 2013
  • The tidal creek dependent mass transport characteristic in Gyeong-Gi Bay (west coast of Korea) was studied using field measured data and numerical model. Gyeong-Gi Bay consists of 3 main tidal channels and contains a well-developed vast tidal flat. This region is famous for its large tidal difference and strong current. We aim to study the effect of tidal creek in the tidal flat on the mass exchange between the estuary and the ocean. For numerical application, the application of unstructured grid feature is essential, since the tidal creek has complicated shape and form. For this purpose, the FVCOM is applied to the study area and simulation is performed for 2 different cases. In case A, geographic characteristics of the tidal creek is ignored in the numerical grid and in case B, the tidal creek are constructed using unstructured grid. And these 2 cases are compared with the field measured cross-channel mass transport data. The cross-channel mass transport at the Yeomha waterway mouth and Incheon harbor was measured in June, 9~10 (Spring tide) and 17~18 (Neap tide), 2009. CTD casting and ADCP cross-channel transect was conducted 13 times in one tidal cycle. The observation data analysis results showed that mass transport has characteristic of the ebb dominance Line 1 (Yeomha waterway mouth), on the other hand, a flood dominant characteristic is shown in Line 2 (Incheon harbor front). By comparing the numerical model (case A & B) with observation data, we found that the case B results show much better agreement with measurement data than case A. It is showed that the geographic feature of tidal creek should be considered in grid design of numerical model in order to understand the mass transport characteristics over large tidal flat area.

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.