• 제목/요약/키워드: River environment management

검색결과 810건 처리시간 0.024초

하천상류지역의 하반식생 자연도 및 경관 분석에 관한 연구 - 경기도 남양주군 수입천을 중심으로 - (A STUDY ON THE ANALYSIS OF THE RIPARIAN VEGETATION NATURALITY AND VIEWSCAPE IN URSTREAM)

  • 안홍규
    • 한국조경학회지
    • /
    • 제25권3호
    • /
    • pp.222-233
    • /
    • 1997
  • Riparian zone occupies not more than 5% of the total watershed area and can be considered in between the terrestrial and aquatic ecology as that does not fall under both of them. Unlike to common terrestrial plant that can e seen on other land, the riparian vegetation that exist in riparian zone can be classified into various groups because of their peculiar living form. The recognition of importance of terrestrial environment has considered the importance of natural river due to which even today, the movement throughout the world to retrograde the river development is taking place customarily. In this research, noticing the actual condition of the river management reality, the original capacity of river landscaping of Han river has been quantified grasping the actual condition of riparian vegetation from distribution area surveying and analysis. The objective of the research is to find out the river retrogression and maintenance methods based on the ecological environmental quality around the river by maintaining the river plants having high natural capacity and river planning method based on the harmony between conservation of river environment and use of riparian zone.

  • PDF

Cooperation in Water Resources Management for the Mekong River Basin through Benefit Sharing

  • Lee, Seungkyung;Lee, Seungho
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.223-223
    • /
    • 2015
  • This research evaluates cooperation in transboundary rivers with special reference to the Great Mekong Subregion (GMS) program in the Mekong River Basin. The benefit sharing approach has been deployed as a theoretical framework to analyze the extent to which the riparian states have achieved cooperation. The river basin governance led by the Mekong River Commission since 1995 has not adequately performed due to non-participation of upstream countries and the lack of law enforcement mechanism. Since the late 1980s, China has undertaken hydropower development unilaterally, thereby triggering discomfort from the Lower Mekong countries. The GMS program has led China to strengthening economic ties with the downstream countries through hydropower development as investors and developers. The program has also supported the establishment of economic corridors, and removal of physical barriers and has paved the way for cooperation in other sectors, such as the environment, agriculture, tourism and energy. There are challenges for further cooperation, including the development gaps between China and the downstream countries, political tensions and environment impacts of hydropower dams in the river basin. The Mekong River Basin shows the possibility of cooperation through benefit sharing. Sharing benefits accrued from the river and beyond the river between China and the downstream countries have enhanced economic ties, thereby consolidating cooperation each another.

  • PDF

용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링 (Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam)

  • 김유경;정세웅
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.710-718
    • /
    • 2011
  • An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

통계로 보는 팔당호 물환경 변화 (Changes in the Water Environment Based on the Statistical Data in the Lake Paldang)

  • 유순주;이은정;박민지;김갑순;임종권;류인구;최황정;변명섭;노혜란
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.688-702
    • /
    • 2018
  • Since the 1970s regulations against the pollution of drinking water have been introduced in Lake Paldang watershed area. To understand the effects of water environment management policies and the impacts of climate changes on Lake Paldang, a long-term comprehensive study of this watershed and the changes in its water environment is required. In this study, we analyzed changes in the weather, hydrology, sources of pollution, water quality, and algal development from 2000 to 2015 year based on the statistical data provided by several national information systems. While the population and amount of sewage in the Lake Paldang watershed increased by about 1.5 times, the amount of animal manure showed a decreasing trend during the same period. The wastewater also increased by about 1.5 times while the amount of water intakes rose by about 1.14 times. The water quality in front of the Paldang Dam, which is the representative monitoring site of the Lake Paldang, was stable. The annual average BOD concentration remained within 2 mg/L, which is a "Good (lb)" level according to the environment standards of Republic of Korea. The development of phytoplankton and harmful cyanobacteria were largely influenced by meteorological factors.

금강 중류의 식물플랑크톤 군집 동태 이해 (2014~2015) (Phytoplankton Community Structure of Midstream of Geum River on 2014 and 2015)

  • 한사랑;조기철;윤조희;이재정;유순애;최인찬;주현지;천세억;임병진
    • 생태와환경
    • /
    • 제49권4호
    • /
    • pp.375-384
    • /
    • 2016
  • Phytoplankton community is one of the important factors for the management of aquatic environment due to generation of varying toxins by harmful algal species. This study was performed to examine the phytoplankton community structure (PCS) in the midstream of Geum River (GR) from January 2014 to December 2015. The water sampling was performed in five stations on 2014, and three stations on 2015. Subsequently, the morphological identification was performed by microscopic observation in laboratory condition. As results, total 265 species were identified and it was comprised of 40.8% of Bacillariophyceae, 9.1% of Cyanophyceae, 44.5% of Chlorophyceae, and the others (4.9%). During the investigation period, total average standing crop of phytoplankton was $12,948cells\;mL^{-1}$, and it was comprised of $7,702cells\;mL^{-1}$ of Bacillariophyceae, $2,821cells\;mL^{-1}$ of Cyanophyceae, $2,121cells\;mL^{-1}$ of Chlorophyceae, and $305cells\;mL^{-1}$ of others. To verify which tributaries of upstream area influence on PCS of midstream of GR, the phytoplankton standing crops of two stations including Mihocheon (MH) and Gapcheon (GC) were examined on 2014, and compared to result of on 2015. The results were shown that the MH station had more similar phytoplankton standing crops with midstream of GR than GC station. The relationship between environmental parameters and phytoplankton dynamics was studied at the investigated station. As results, whereas water temperature and total phosphorus were represented the positive correlation, N/P ratio was remarkably exhibited negative correlation. From the results, it is suggested that the PCS of midstream of GR was more affected by MH station than GC station, and the changes of temperature, phosphorus concentration, and N/P ratio may be important factors on the PCS formation of midstream of GR.

부하지속곡선(Load Duration Curve; LDC)을 이용한 한강수계 오염총량관리 목표수질 평가방법 적용 방안 (Application of the Load Duration Curve (LDC) to Evaluate the Achievement Rate of Target Water Quality in the Han-River Watersheds)

  • 김은경;류지철;김홍태;김용석;신동석
    • 한국물환경학회지
    • /
    • 제31권6호
    • /
    • pp.732-738
    • /
    • 2015
  • Water quality in four major river basin in Korea was managed with Total Maximum Daily Load (TMDL) System. The unit watershed in TMDL system has been evaluated with Target Water Quality (TWQ) assessment using average water quality, without considering its volume of water quantity. As results, although unit watershed are obtained its TWQ, its allocated loads were not satisfied and vice versa. To solve these problems, a number of TWQ assessments with using Load Duration Curve (LDC) have been studied at other watersheds. The purpose of this study was to evaluate achievement of TWQ with Flow Duration Curve (FDC) and Load Duration Curve(LDC) at 26 unit watersheds in Han river basin. The results showed that achievement rates in TWQ assessment with current method and with LDC were 50~56 % and 69~73%, respectively. Because of increasing about 20% of achievement rates with using LDC, the number of exceeded unit watershed at Han river Basin was decreased about 4~6 unit watersheds.

환경 친화적이며 지속 가능한 하천관리 방안 (Sustainable and environmental management of Yeongsan river)

  • 김도희
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2009년도 춘계학술발표회
    • /
    • pp.39-40
    • /
    • 2009
  • 하천관리의 기본 목표는 안정적인 수량의 확보와 수질의 확보이다. 아울러 재해를 예방하고 안정적으로 용수를 확보하며, 자정 기능의 유지와 하천 생태계를 유지하면서 친수, 생활, 문화, 산업 공간으로 활용되면서 인적, 물적, 생물들이 교류하여 하천을 통한 문화와 산업이 활성화 되어야 한다.

  • PDF

순환신경망 모델을 활용한 팔당호의 단기 수질 예측 (Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models)

  • 한지우;조용철;이소영;김상훈;강태구
    • 한국물환경학회지
    • /
    • 제39권1호
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

비모수 경향분석법 적용을 통한 금강수계 총량관리 단위유역의 수질변화 연구 (A Study on the Water Quality Changes of TMDL Unit Watershed in Guem River Basin Using a Nonparametric Trend Analysis)

  • 김은정;김용석;류덕희;류지철;박배경
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.148-158
    • /
    • 2014
  • In order to assess the effect of TMDLs management and improve that in the future, it is necessary to analyze long-term changes in water quality during management period. Therefore, long term trend analysis of BOD was performed on thirty monitoring stations in Geum River TMDL unit watersheds. Nonparametric trend analysis method was used for analysis as the water quality data are generally not in normal distribution. The monthly median values of BOD during 2004~2010 were analyzed by Seasonal Mann-Kendall test and LOWESS(LOcally WEighted Scatter plot Smoother). And the effect of Total Maximum Daily Loads(TMDLs) management on water quality changes at each unit watershed was analyzed with the result of trend analysis. The Seasonal Mann-Kendall test results showed that BOD concentrations had the downward trend at 10 unit watersheds, upward trend at 4 unit watersheds and no significant trend at 16 unit watersheds. And the LOWESS analysis showed that BOD concentration began to decrease after mid-2009 at almost all of unit watersheds having no trend in implementation plan watershed. It was estimated that TMDLs improved water quality in Geum River water system and the improvement of water quality was made mainly in implementation plan unit watershed and tributaries.

팔당호의 영양염류 장기변동 추세분석 (Long-Term Trend Analysis of Nutrient Concentrations at Lake Paldang)

  • 장승현;정인영;김성미;양희정;김성수;공동수
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.295-305
    • /
    • 2009
  • The purpose of this study was to understand of water quality characteristics of lake Paldang, especially at a certain representative site, right in front of Paldang dam ($P_2$ site) and to propose the directions of water quality management of lake Paldang. Water characteristics at $P_2$ site was investigated by principle components analysis and the Pearson correlation coefficient analysis. Also, seasonality was identified by the Kruskal-Wallis test and long term trend of nutrients and chlorophyll-a was analyzed by seasonal decomposition method at lake Paldang statistically. The primary factor affecting on water quality at $P_2$ site was identified as nutrients, while physical parameters, such as rainfall and inflow rate were also important factors. At the result of linear regression analysis particulate organic phosphorus (POP) vs total phosphorus (TP) showed very high correlation of 0.78. TP loading was increased annually from 1995 to 2006. Chlorophyll-a and nutrients show seasonality at $P_2$ site. Long term trend of Chlorophyll-a was increased by increase of TP at lake Paldang.