• Title/Summary/Keyword: River bridge

Search Result 378, Processing Time 0.033 seconds

Computation and Assessment of Delivery Pollutant Loads for the Streams in the Nakdong River Basin (낙동강 소수계별 유달부하량 산정 및 평가)

  • Yoon, Young-Sam;Yu, Jae-Jeong;Kim, Moon-Su;Lee, Hae-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2006
  • Production loads of the contaminants near the Nakdong-river are, BOD : $1,006ton{\cdot}day^{-1}$, TN : $117ton{\cdot}day^{-1}$, and TP : $21ton{\cdot}day^{-1}$. Among the sources of contamination, the biggest contribution to the production load was shared by the human population, which maintains 40.7% of BOD, 44.2% of TN, and 52.5% of TP production. Similarly, among the sources of discharge load, the human population contributed 45.0% of BOD, 34.5% of TN, and 45.8% of TP. Results of flow investigation in 2001 and 2002 indicate that among the side streams, Nam-river showed the greatest average flow. In case of main stream flow, it was increased in the downstream due to the increase of the influents from the side streams. In case of BOD, COD, TOC and SS, high values were detected at Keumho-river where industrial wastewater was discharged as high level concentration. In case of the main stream, Koryoung point where direct influence of Keumho-river and Seongseo industrial complex is evident showed high BOD, COD and TOC. Oxidized nitrogen compounds and total nitrogen showed similar patterns of BOD, COD, and TOC. Especially, nitrate nitrogen was relatively high at all points. However, in case of Chlorophyll-a, relatively high values were observed at mid- and downstream areas such as Koryoung, Namjee, Soosan, Moolkeum and Hakooeun. This could be caused by the slow flow rate and the abundant nutrient salts attributed by the side streams. Relatively better water quality was observed in 2002 when the flow was relatively abundant than that in 2001. Results of investigation during 2001-2002 showed that delivery load increased as the flow reaches downstream. In 2001, delivery loads at the downstream Soosan-bridge were BOD $22,152ton{\cdot}day^{-1}$, COD $45,467ton{\cdot}day^{-1}$, TN $22,062ton{\cdot}day^{-1}$, TP $926ton{\cdot}day^{-1}$. Delivery loads in 2002 were increased due to the increase of the rainfall. They are BOD $25,876ton{\cdot}day^{-1}$, COD $64,200ton{\cdot}day^{-1}$, TN $41,101ton{\cdot}day^{-1}$, and TP $1,362ton{\cdot}day^{-1}$.

Estimation of Instream Flow in Han River (한강에서의 하천유지유량 산정)

  • 오규창;정상만
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.119-128
    • /
    • 1991
  • This study was focused on establishing the concepts of the instream flow to prevent the problems for the conceptual ambiguity and the difference in the instream flow estimation methods. The average drought flow is defined as the flow required to guarantee the minimum function of the river such as prevention of drying. The environmental control flow is defined as the flow required to control optimal river environment, the flow required for navigation, prevention of sea water-intrusion, protection of river management facilities, conservation of water Quality, fishing, prevention of river mouth closure, control of groundwater level, protection of animals and plants, and landscape. The average drought flow was obtained by flow duration analysis for the natural flows in the Han River at Indo-Bridge gaging station. When considering the 9 factors related to environment conservation, the conservation of water quality was proved to be most important. The pollutants for the river flows were estimated and the water qualities were forecasted. After comparing the water qualities in the future and water quality standards, there quired optimal dilution flow was estimated. The average drought flow and environmental control flow are all non-consumptive flows. Therefore larger flow between them, i.e., Max. (average drought flow, environmental control flow) can be the instream flow. The river management flow can be added to the flows for water utilization in the downstream. The results from this study are expected to be very helpful in the systematic river management on the other main rivers in Korea.

  • PDF

Distribution of Wildbirds According to Habitat Environment in Gap Stream (갑천의 서식지 환경에 따른 야생조류 분포에 관한 연구)

  • Lee, Joon-Woo;Lee, Do-Han;Paik, In-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.41-58
    • /
    • 2003
  • This study was conducted to investigate bird community and to suggest a proper way how to manage protect bird community in Gap stream. The survey was carried out over four sections by the line transect method and point counts method from September 2001 to August 2002. Natural stream region as Gasuwon Bridge - Mannyeon Bridge are observed birds were 11 orders 29 families 67 species, Artificial stream region as Mannyeon Bridge - Daedeok Bridge are observed birds were 6 orders 10 families 30 species, Daedeok Bridge - Wonchon Bridge are 8 orders 12 families 28 species, Wonchon Bridge - Gap Stream Bridge are 8 orders 18 families 40 species. All the observed birds in artificial stream region are 8 orders 19 families 47 species. Number of species in natural stream region was higher than artificial stream region owe to a various habitat environment such as forest, cultivated land, streamside forest, sandy plain, gravelly field, reedy field etc. and can not add with the interface and the usage of the human. Number of species in artificial stream region was lower than natural stream region owe to a simple habitat environment and the water ecosystem is severed with embankment block and grass plot with the land ecosystem. The furtherance of various habitat environment which considers the ecosystem like the natural stream as the water ecosystem is joined together with the land ecosystem is desired to attract various wildbirds in Gap stream. The design is desired with the maintenance of the stream to consider the stream corridor which plays ecological important role as connect the fragment habitats.

  • PDF

The Evaluation of Water Quality in Coastal Sea of Saemangeum by Chemical Environmental factors (새만금 하구역의 이화학적 환경요인에 따른 수질 평가)

  • Kim, Jae-Ok;Kim, Won-Jang;Jo, Kuk-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • The objective of this study was to evaluate chemical water quality by hourly monitoring(25hr) of Saemangeum esturary. For this study, we selected 2 sites like a Mangyong Bridge(St. 6) and Dongjin Bridge(St. 7). Inflow of salt water was not detected during low tide(maximum 553, 508cm) of all stations, while the salinity rises were detected in spring tide(750cm). When 602m of maximum tide was reached, salinity concentration was increased at St. 7, while there was no change in St. 6. Therefore, We know that salinity variation is greatly influenced by tide height at survey site. Also, significant variance of salinity(p<0.05) was found between St. 6 and St. 7 because dike construction made the flood tide move into the Dongjin river. Total suspened solids(TSS) concentration was increased because of the river runoff at St. 6, and also the turbulance and resuspension according to salt intrusion at St. 7. During the high tide, the water discharge from the sea seemed to dilute the nutrient but to elevate TSS concentration in St. 7. Silicate and nitrate concentrations in the studied site were decreased by the mixing of sea water, whereas the evident trend of phosphate concentration was not found. This result can be explained by the phosphorus condition. Phosphorus exists inactive when it is affected by hydrated iron and adsorbed onto suspended matters. Compared to the environmental conditions of the St. 6 and St. 7, physical factors such as temperature, dissolved oxygen and TSS have statistically no significant difference(p<0.001), but nutrient concentrations were higher at St. 6 than St. 7. It could be suggested from these results that it is important to control the discharge of fresh water by sewage treatment plants located in St. 6 for water quality management.

Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River (황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정)

  • Ahn, Taejin;Cho, Byung Doon;Lyu, Heui Jeong
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2005
  • This paper is to present the determination of the optimal loss rate parameters and unit hydrographs from the observed single rainfall-runoff event using optimization model. The linear program models has been formulated to derive the optimal unit hydrographs and loss rate parameters for the site of the Su-Jik Bridge in the HwangGuJichen River; one minimizes the summation of the absolute residual between predicted and observed runoff ordinates. In the perturbation stage of parameters the trial and error method has been adopted to determine the loss rate parameters for Kostiakov's, Philip's, Horton's, and Green-Ampt's equation. The unique unit hydrograph ordinates for a given rainfall-runoff event is exclusively obtained with ${\Phi}$ index, but unit hydrograph ordinates depend upon the parameters for each loss rate equations. In this paper the single rainfall-runoff event observed from the sample watershed is considered to test the proposed method. The optimal unit hydrograph obtained by the optimization model has smaller deviations than the ones by the conventional method.

  • PDF

Characteristics of Washed-off Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms (주차장 및 교량지역의 강우유출수내 비점오염물질의 특성 비교 및 동적 EMCs)

  • Kim, Lee-Hyung;Lee, Seonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.248-255
    • /
    • 2005
  • Since the water quality of drinking water sources has been recognized as a big issue, the ministry of Environment in Korea is designing the total maximum daily load (TMDL) program for 4 major large rivers. The TMDL program can be successfully performed as controling the nonpoint pollutants from watershed area near the river. Of the various landuses in nonpoint pollution, parking lots and bridges are stormwater intensive landuses because of high imperviousness and high pollutant mass emissions from vehicular activities. Vehicle emissions from those areas include different pollutants such as heavy metals, oil and grease and particulates from sources such as fuels, brake pad and tire wear, etc. Especially the pollutant washed-off from the landuses are directly affecting to the river water quality. Therefore this research was conducted to understand the magnitude and nature of the stormwater emissions with the goal of quantifying stormwater pollutant concentrations and mass emission rates of pollutants from parking lot and bridges in Korea. In Kongju city areas, two monitoring sites were equipped with an automatic rainfall gages and an automatic flow meter for accumulating the useful data such as rainfall, water quality and runoff flow. This manuscripts will show the concentration changes during storm duration and EMCs to characterize the concentration profiles in different land uses. Also the first flush criteria will be suggested using dynamic EMCs. The definition of dynamic EMC is a new approach explaining the relationship of EMC and first flush effect.

Three-dimensional Numerical Simulation of Driftwood Accumulation and Behavior Around Bridge Piers (교각 주변 유목 집적 및 거동 특성 3차원 수치모의)

  • Park, Moonhyeong;Kim, Hyung Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.336-344
    • /
    • 2020
  • The prediction and evaluation of driftwood accumulation around river-crossing structures are essential because driftwood accumulation increases during flood disasters. In this study, the driftwood accumulation and behavior around bridge piers were evaluated via a numerical model that could be employed to analyze three-dimensional turbulent flow and driftwood motion. The moving particle semi-implicit-based model for driftwood motion was sensitive to the number of spheres. The numerical results showed that the approach velocity and the ratio of driftwood length to pier width were the key factors influencing driftwood accumulation, whereas the driftwood density had only a minor influence. Overall, it is expected that this study will contribute to the development of improved risk evaluation indexes for assessing driftwood accumulation around river-crossing structures.

An Analysis of Long-Term Bed Elevation Changes to Estimate Total Scour Depth at Bridge Site (교량에서의 총세굴깊이 산정을 위한 장기하상변동분석)

  • Lee, Jae-Su
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.721-729
    • /
    • 1997
  • Total scour depth at a bridge is comprised of three components: long-term changes, contraction scour and local scour. Therefore, the analysis of long-term bed elevation changes is very important in the estimation of total scour depth at bridge sites. In this research, long-term bed elevation changes at the Namhan River Bridge are analysed using CHARIMA and HEC-6 models. The results show that, for 5-year steady normal stream flow, the bed elevation is aggreded by 45cm for CHARIMA model but degraded by 5cm for HEC-6 model. For 5-year unsteady flow, the bed elevation is changed greatly and it has a great influence on the estimation of total scour depth. Therefore, to make a proper estimation of total scour depth, not only contraction scour and local scour, but also long-term bed elevation changes should be estimated precisely.

  • PDF

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.