• Title/Summary/Keyword: River bridge

Search Result 381, Processing Time 0.022 seconds

Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan (울산 태화강 하구역 퇴적물의 유기물 및 미량금속 오염도 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Chung-Sook;Kim, Hyung-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.542-554
    • /
    • 2015
  • Grain size, the content of ignition loss (IL), and the concentrations of chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in surface sediments from the Taehwa River estuary, Ulsan, were measured to evaluate pollution levels and potential ecological risks of organic matter and trace metals in estuarine sediment. The mean grain size (Mz) of sediments in the study region ranged from $-0.8-7.7{\varphi}$ (mean $2.8{\pm}2.4{\varphi}$). Surface sediments in the upstream region of the Taehwa River were mainly composed of coarse sediments compared to the downstream region. The concentrations of IL, COD, AVS and trace metals in the sediment were much higher at downstream sites of Myeongchon Bridge in the vicinity of industrial complexes than at upstream sites of those in the vicinity of the residential areas due to the anthropogenic input of organic matter and trace metals by industrial activities. On the basis of several geochemical assessment techniques [sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollution load index (PLI) and ecological risk index (ERI)], the surfaces sediments in the study region are not highly polluted for trace metals, except for As. However, the higher concentrations in downstream study regions of the Taehwa River could impact benthic organisms including shellfish (i.e. Manila clam) in sediments.

Water Quality Properties of Tributaries of Daechung Lake, Korea (대청호 유입지천의 수질 특성)

  • Shim, Moo Joon;Yoon, Jae Yong;Lee, Soo Hyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.12-25
    • /
    • 2015
  • The tributaries of Daechung Lake play an important role in controlling eutrophication in the lake, which is used for agricultural purposes and as potable water. However, water quality properties were not extensively studied in the tributaries of Daechung Lake. The objectives of this study are to investigate spatial and temporal properties of water quality and to characterize streams which could threaten water quality of Daechung Lake. For this study, water samples were weekly or monthly collected from February 2014 to October 2014 in 9 streams. Water quality parameters analyzed in this study include biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen and phosphorus (TN and TP), suspended solids (SS), and chlorophyll a. Based on temporal distribution and principal component analysis, BOD, COD, TOC, SS, and TP were controlled by not only river discharge that increased during summer due to heavy rain fall, but also due to anthropogenic input (e.g., bridge construction and/or agricultural activity). Dilution is also one of the factors explaining TN and conductivity, both of which decreased with increased discharge. Generally, concentrations of contaminants (BOD, COD, TOC, TN and TP) in the tributaries were higher than those of Daechung Lake. However, pollution load indicated that only the main channel of Geum River and Sook Stream may largely influence lake waters, attributed mostly to their large volumes. This implies that the main channel and Sook Stream are the major influences on the water quality of Daechung Lake.

The Conservation of an Woljung Wooden Bridege Structure (월정교지 출토 목재유물의 보존처리)

  • Lee, Chang-Geun;Kim, Ik-Joo;Kim, Sin-Guk
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.9-13
    • /
    • 1992
  • An Woljung wooden bridge structure, which assumde to has been built in the unification of shilla dynasty, was excavated at Nam-chun river basin inKyung-ju. As a result of primary investigation, the weigh loss was 70-80% and the volumetric shrinkage was up to 38% without any conservation. Between 1986 and1991, they were conserved by the two step PEG treatment at the Mokpo Conservation Institute for Maritime Archaeological Finds.

  • PDF

Calculation of Abnormallly Large Flood Discharge Amount Destroying the Stage Gaging Station (이상 호우에 의하여 붕괴된 수위국 지점의 홍수량 규모 결정)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.675-678
    • /
    • 2008
  • An abnormal storm by the typhoon of RUSA in 2002th year was broken out with tremendous flood demages and inundations on the basin of Chogangcheon located in the upper middle part of Guem river's upstream. This flood could not be engaged because it was so big that the stage engaging Songcheon station stuck to Songcheon bridge was destroyed by submerging. In this study the quantity of the flood was calculated by use of Manning's equation and suitable roughness coefficient was suggested.

  • PDF

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.

Seismic Response Control of a Cable-Stayed Bridge Using Passive, Active, Semiactive and Hybrid Systems (수동, 능동, 반능동 및 복합 시스템을 이용한 사장교의 지진응답 제어)

  • ;;Spencer, B. F.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.17-29
    • /
    • 2003
  • This paper preliminarily investigates the effectiveness of various control systems, such as passive, active, semiactive and hybrid control, for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. This benchm.0.00000ark problem considers the cable-stayed bridge that is scheduled for completion in Missouri, USA In 2003. Seismic considerations were strongly considered in the design of this bridge due to location of the bridge and its critical role as a principal crossing of the Mississippi River. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capability of each control system. In this study, four passive control systems, one active control system, two semiactive control systems and three hybrid control systems are considered. Numerical simulation results show that all the control systems are effective in reducing the responses of the benchmark cable-stayed bridge under the historical earthquakes. To get good performance, however, the passive control systems need quite large control forces compared to other control systems. The simulation results also demonstrate that the passive, semiactive and hybrid control systems are robust to the stiffness uncertainty of the structure. Therefore, the semiactive and hybrid control systems are more appropriate in real applications for full-scale civil infrastructures.

Hybrid Control of a Benchmark Cable-Stayed Bridge Considering Nonlinearity of a Lead Rubber Bearing (납고무받침의 비선형성을 고려한 벤치마크 사장교의 복합제어)

  • Park, Kyu-Sik;Jung, Hyun-Jo;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.51-63
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. This benchmark problem considers the cable-stayed bridge that is scheduled for completion in Cape Girardeau, Missouri, USA in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi river. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearlized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capabilities of each control strategy. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Conventional base isolation devices such as lead rubber bearings are used for the passive control design and Bouc-Wen model is used to simulate the nonlinear behavior of these devices For the active control design, ideal hydraulic actuators are used and on $H_2$/LQG control algorithm is adopted. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective compared to that of the passive control strategy and slightly better than that of the active control strategy. The hybrid control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

A Study on the Inflowing Pollution Load and Material Budgets in Hampyeong Bay (함평만의 유입오염부하량 및 물질수지에 관한 연구)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, an analysis of the inflowing pollution load of the rivers in Hampyeong bay showed the average organic matter pollution loads of BOD, COD, and TOC to be 79.7 kg-BOD/day, 144.06 kg-COD/day, and 93.0 kg-TOC/day, respectively. The inflowing organic matter pollution load was the heaviest in Sonbul dike, followed by Jupo bridge and Yangman complex. With regard to season, the load characteristics were outstanding in July, the rainy period in the summer. The average inflowing pollution loads of nutrients were 20.9 kg-DIN/day, 17.1 kg-DIP/day, 148 kg-TN/day, and 37.4 kg-TP/day A comparison of the inflowing nutrients loads for each river showed the load to be the heaviest in Yangman complex, followed by Baegok bridge and Jupo bridge. In the experiment on the material budgets of Hampyeong bridge conducted using a box model, the detention time of fresh water was found to be 52.4 days, with the bay displaying the characteristics of a so dissolved inorganic nitrogen (DIN) in the nutrients material budgets, ${\Delta}DIN$ values were found to be negative, indicating the tendency of consumption and open sea leak by photosynthesis to be higher than the nitrogen that flowed in. As for dissolved inorganic phosphorus (DIP), ${\Delta}DIP$ showed positive values, indicating a tendency for accumulation as the supply through organic matter decomposition, elution load of sediments, and inflowing load of the river turned out to be higher than the consumption by phytoplankton and outflow to open sea.