• Title/Summary/Keyword: River Plume

Search Result 36, Processing Time 0.025 seconds

Outflow Characteristics of Nakdong River Plume (낙동강수의 유출특성에 관한 연구)

  • 김기철;김재중;김영의;한건모;최광규;장성태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.305-313
    • /
    • 1996
  • CTD measurements were conducted in the Nakdong estuary on the several sections or along-plume and cross-plume directions in 1993 and 1994. Internal Froude number Fi=0.22-0.35 in ebb tides and 0.14 in flood tides suggest that Nakdong river plume may go farther seawards in the along-plume direction with little mixing with the adjacent sea water after the construction of Nakdong river barrier. From Dadae-Po to Gaduk-Do section of cross-plume direction, three cores of low salinity were found. The main plume outflows from the newly made channel by cutting Ulsuk-Do after the construction of barrier. The low salinity core found near Gaduk-Do is the plume patch advected by tidal currents. Rossby deformation radius varied with the tidal cycle so that Coriolis effect is strengthened in flood tides to deepen the isohalines westwards to the Gaduk-Do site. Internal wavelike shape was found in the section of cross-plume direction during ebb tides. Richardson number of the section suggests the possibility of forming internal wave but more precise observations are necessary.

  • PDF

Dynamics of the River Plume (하천수 플룸 퍼짐의 동력학적 연구)

  • Yu, Hong-Sun;Lee, Jun;Shin, Jang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.413-420
    • /
    • 1994
  • Dynamics of the river plume is a very complicated non-linear problem with the free boundary changing in time and space. Mixing with the ambient water through the boundary makes the problem more complicated. In this paper we reduced 3-dimensional problem into 1-dimensional one by using the integral analysis method. Basic equations have been integrated over the lateral and vertical variations. For these integrations we adopted the well-established assumption that the flow-axis component of plume velocity and the density difference of the plume with the ambient water have Gaussian distributions in directions which are perpendicular to the flow-axis of the plume. We also used the result of our previous study on the lateral spreading velocity of the plume derived under the same assumption. And entrainment was included as a mixing process. The resultant 1-dimensional equations were solved by Runge-Kutta numerical method. Consequently, comparatively easy method of numerical analysis is presented for the 3-dimensional river plume. The method can also be used for the analysis of the thermal plume of cooling water of power plants.

  • PDF

Characteristics of the plume formed by the buoyant discharges from the river

  • Kim, Ki-Cheol;Kim, Sung-Bo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.981-994
    • /
    • 2014
  • Density currents formed by buoyancy discharges from rivers are numerically studied using non-dimensional two layer model including Coriolis acceleration, bottom stress, interfacial friction. Some typical numbers such as Froude number, densimetric Froude number and Kelvin number are obtained and some characteristic scales are defined as a result of non-dimensionalization of the governing equations. Besides the Coriolis effect, the configurations of bottom topography, bottom friction coefficient and interfacial friction are found to significantly affect the propagation of the warm water plume. Frontal position can fastly propagate in the case of large density difference between the two layers and small interfacial friction. Left side boundary current is easily formed under the small interfacial friction. With large Kelvin number, both right and left side boundary currents are formed. Wave-like disturbances and eddies are easily formed under the high Froude number.

Salinity Distribution in the Mid-eastern Yellow Sea during the High Discharge from the Keum River Weir (금강하구언 대량방류시 황해 중동부 해역의 염분분포)

  • Choi, Hyun-Yong;Lee, Sang-Ho;You, Kwang-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Hydrographic survey was carried out in the mid-eastern Yellow Sea from Keum River to Taean Peninsula in order to study the motion of the freshwater from the Keum River during July 07-12, 1997 when a large volume of freshwater was discharged from the Keum River weir. The low-salinity (less than 30.0 psu) plume was distributed over the large area between the Keum River and Ochong Island, 60 km northwest off the Keum River mouth. A band of relatively low saline water, originating from the Keum River, was also observed to the north of Ochong Island. The strong haline front had advanced from near Sibidongpa Island to Ochong Island, 25 km northwest of Sibidongpa Island, for 48 hours. A northwestward flow of a speed greater than 0.2 m/s was observed in the surface plume layer to the north of Sibidongpa Island where the water column was strongly stratified. The observed mean flow and the change of the frontal position are interpreted as resulting from the spreading of the Keum River plume. These results suggest that the discharge from the Keum River plays an important role in the coastal circulation of the mid-eastern Yellow Sea adjacent to the river.

  • PDF

Three-dimensional Mixing Behaviour Characteristics of Seomjin River Discharges (섬진강 유출수의 3차원 거동 특성)

  • Kim, Jong-Kyu;Kim, Myong-Won;Kang, Tae-Soon;Yoon, Eun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.50-57
    • /
    • 2006
  • The effect of discharges from the Seomjin River on the dispersion of thermal effluent from the Hadong Power Plant, located along the south coast of Korea, was investigatedusing intensive field observation and three-dimensinal Princeton Ocean Model simulations. A POM and observed CTD data was used to predict the mixing behaviour of the Summer freshet, during the July 2005 intensive observing period. The dispersal of the river discharge anomaly, associated with the Seomjin River plume, was seen to be highly responsive to tidal currents and river flows during the spring tide.

OCEANOGRAPHIC EVENTS AT NORTHERN BORNEO AND THEIR RELATIONSHIP TO HARMFUL ALGAL BLOOMS

  • Knee, Tan Chun;Ishizaka, Joji;Ransi, Varis;Son, Tong Phuoc Hoang;Tripathy, Sarat Chandra;Siswanto, Eko
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.491-494
    • /
    • 2006
  • The west coast of Northern Borneo is strongly influenced by Asian monsoon. Present research using the satellite ocean color (OC) remote sensing has identified some interesting oceanographic phenomena in this area that could be related to the harmful algal blooms (HAB). Occurrence of seasonal upwelling event was noticed off the northern tip of Borneo Island that could be related to the northeast monsoon wind. Harmful algal blooms by Pyrodinium bahamense var. compressum occurred since 1976. Subsequently, during December 2003, there was a report of new HAB by Cochlodinium polykrikoides in Northern Borneo. Analysis of OC images revealed that the Cochlodinium bloom had very high chlorophyll a signal and strong absorption characteristics. Results showed that the Baram River plume and upwelling at Northern Borneo were the source of nutrient for the Cochlodinium bloom in the offshore region. Ocean color images of 2004 showed that the bloom from Northern Borneo had crossed the Balabac Straits, reaching Palawan Island in Philippine. Due to the possibility of transboundary HAB problem, we propose a regional HAB monitoring network for an effective HAB management.

  • PDF

Variations in subtidal surface currents observed with HF radar in the costal waters off the Saemangeum areas (새만금 연안역에서 HF radar에 의해 관측된 조하주기 표층해류의 변화)

  • Kim, Chang-Soo;Lee, Sang-Ho;Son, Young-Tae;Kwon, Hyo-Keun;Lee, Kwang-Hee;Choi, Byoung-Hy
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.56-66
    • /
    • 2008
  • Subtidal surface currents are derived from HF radar measurements in the Saemangeum coastal ocean of the Yellow sea in July 2002 and from September to November 2004. The surface current field is analyzed to examine the effect of wind, river plume and coastline change on the spatial distribution and temporal variation of the surface currents. In July 2002, average wind speed was 0.5 m/s and freshwater discharge from the Keum River was $0.88{\times}10^7\;ton/day$. Temporal mean currents ($\overline{U}$) flow to the northwest with speed of $7{\sim}10\;cm/s$ near the Keum River estuary, to the west as fast as 13 cm/s near the opening gap of the Saemangeum $4^{th}$ dyke, and to the northwest off the Gogunsan-archipelago. This flow pattern is a result of the Keum River plume dispersal and tide-residual currents from the opening gap of the Saemangeum $4^{th}$ dyke. Time series of spatially-averaged current (<$U-\overline{U}$>) direction is highly (r=0.98) correlated with wind direction. From September to November 2004, the opening gap of the Saemangeum $4^{th}$ dyke was closed, northwesterly wind blew with speed of 2.5 m/s on average and the Keum River discharge was $1.19{\times}10^7\;ton/day$. Temporal mean current field ($\overline{U}$) has weak surface flow in most of the coastal ocean and relatively strong currents flow to the southwest with speed of 10 cm/s along the shape coastline of the Gogunsan-archipelago and the Saemangeum $4^{th}$ dyke. The strong flow is generated by the prevailing northwesterly wind which pushes the Keum River plume toward the Saemangeum $4^{th}$ dyke. The residual currents from the opening gap of the Saemangeum $4^{th}$ dyke disappeared and correlation coefficient between time series of spatially-averaged current () direction and the wind direction is 0.69.

Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico

  • Son, Young-Baek;Gardner, Wilford D.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.235-258
    • /
    • 2011
  • The purpose of this study is to investigate climatological variations from the temporal and spatial surface particulate organic carbon (POC) estimates based on SeaWiFS spectral radiance, and to determine the physical mechanisms that affect the distribution of pac in the Gulf of Mexico. 7-year monthly mean values of surface pac concentration (Sept. 1997 - Dec. 2004) were estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data. Synchronous 7-year monthly mean values of remote sensing data (sea surface temperature (SST), sea surface wind (SSW), sea surface height anomaly (SSHA), precipitation rate (PR)) and recorded river discharge data were used to determine physical forcing factors. The spatial pattern of POC was related to one or more factors such as river runoff, wind-derived current, and stratification of the water column, the energetic Loop Current/Eddies, and buoyancy forcing. The observed seasonal change in the POC plume's response to wind speed in the western delta region resulted from seasonal changes in the upper ocean stratification. During late spring and summer, the low-density river water is heated rapidly at the surface by incoming solar radiation. This lowers the density of the fresh-water plume and increases the near-surface stratification of the water column. In the absence of significant wind forcing, the plume undergoes buoyant spreading and the sediment is maintained at the surface by the shallow pycnocline. However, when the wind speed increases substantially, wind-wave action increases vertical motion, reducing stratification, and the sediment were mixed downward rather than spreading laterally. Maximum particle concentrations over the outer shelf and the upper slope during lower runoff seasons were related to the Loop Current/eddies and buoyancy forcing. Inter-annual differences of POC concentration were related to ENSO cycles. During the El Nino events (1997-1998 and 2002-2004), the higher pac concentrations existed and were related to high runoffs in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico. During La Nina conditions (1999-2001), low Poe concentration was related to normal or low river discharge, and low PM/nutrient waters in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico.

Wind and Bathymetry Effects on the Fresh Water Plume Structures (담수 확산에 미치는 바람과 해저 지형의 영향)

  • Lee, Jungwoo;Yun, Sang-Leen;Oh, Hye-Ceol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.698-703
    • /
    • 2014
  • The structures of fresh water plume depending on estuarine geometries and wind directions (upwelling, onshore, downwelling, and offshore winds) were studied using the Regional Ocean Modeling System (ROMS). Four idealized estuaries, which are different in bathymetry, were considered. The results showed that the fresh water plume was restricted close to the shore line where a river was connected to the sloping shelf rather than the flat shelf due to the fast momentum exchanges from x, y to z momentums on the sloping shelf. Mild upwelling and offshore winds (${\mid}{\tau}_{\omega}{\mid}=0.01Pa$) enhanced stratification on the contrast to previous studies which showed that winds destroyed stratification by enhanced vertical mixing. However, downwelling and onshore winds had similar effects on the vertical structure of the fresh water plume as in previous studies enhancing vertical mixing. The plume was confined above the underneath submarine channel, thus the plume path was directly affected by the direction of the submarine channel on the shelf.