• Title/Summary/Keyword: River Network

Search Result 453, Processing Time 0.025 seconds

Forecasting water level of river using Neuro-Genetic algorithm (하천 수위예보를 위한 신경망-유전자알고리즘 결합모형의 실무적 적용성 검토)

  • Lee, Goo-Yong;Lee, Sang-Eun;Bae, Jung-Eun;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • As a national river remediation project has been completed, this study has a special interest on the capabilities to predict water levels at various points of the Geum River. To be endowed with intelligent forecasting capabilities, the author formulate the neuro-genetic algorithm associated with the short-term water level prediction model. The results show that neuro-genetic algorithm has considerable potentials to be practically used for water level forecasting, revealing that (1) model optimization can be obtained easily and systematically, and (2) validity in predicting one- or two-day ahead water levels can be fully proved at various points.

A Basic Study on Connectivity of Urban Parks for the Urban Ecological Network Establishment (도시생태네트워크 구축을 위한 도시공원의 연결성 평가 기초 연구)

  • Sung, Hyun-Chan;Kim, Mi-Ri;Hwang, So-Young;Kim, Su-Ryeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.125-136
    • /
    • 2014
  • Urban Green Area has ecologically deteriorated along with quantitative loss, being developed as a dot itself rather than connected to forests and green networks around the park. The present study aims to propose a connected plan on Urban Ecological Network establishment through 'assessment of the connectivity of the entire urban parks' in accordance with distance of forest and river and 'assessment of trends in connection fragmentation of urban parks' in accordance with the past change of forest and river. According to the result of this study, criteria based on previous research was "directly linked type is less than 300m, conceptually linked type is between 300m to 1km, the isolated type is greater than 1km". And the result of 'assessment of the connectivity of the entire urban parks' is analyzed as the rate of park and green network, 41.7% in Suwon, 80.0% in Seongnam, 88.9% in Namyangju on the basis of office and field investigation. Also, according to the result of 'assessment of trends in connection fragmentation of urban parks', consideration for connection to the original forest is insufficient.

Optimal Allocation of Water Resources based on the Network Model (Network 모형에 의한 수자원의 최적배분)

  • 연규방;심순보
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.111-121
    • /
    • 1994
  • The purpose of this paper is to construct a network model for the optimal allocation of limited water resources to the nodal system with given priorities. The solution technique for the model is based on the out-of-kilter algorithm(OKA). For the verification and application of the theoretical methodology and computer programs, the Geum river system is selected. Using release of Daecheong dam and water demand in Geum river basin, optimal allocation of water resources is accomplished for 4 cases(case 1 - case 4) which consider priority numbers in the demand nodes. The results of the application show that the model can reasonably represent the physical system, and water shortage at the demand nodes with high priority numbers is reduced. Its system solution was verified with that by the revised simplex algorithm.

  • PDF

Study on Water Level and Salinity Characteristics of Nakdong River Estuary Area by Discharge Variations at Changnyeong-Haman Weir(1) (창녕·함안보 방류량에 따른 하류지역 및 하구역의 수리환경특성에 관한 연구(1))

  • Kim, Tae-Woo;Yang, Hyun-Soo;Park, Byeong-Woo;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.361-366
    • /
    • 2018
  • The present study analyzed the variation factors in inducing a salinity change using the existing observation network in the section between the Nakdong River Estuary Barrage and Changnyeong-Haman Weir, and also examined the seasonal changes in precipitation, salinity, and discharge. Furthermore, this study analyzed the causes of a salinity increase by collecting observational data during a period when abnormal salinity occurred, and further investigated the salinity transfer time in a section of approximately 5.3 km from the Nakdong River Estuary Barrage to Nakdong River Bridge to understand the behavioral characteristics of the salinity moving upstream. The study results would make it possible to control the increase in salinity and block salt water from moving upstream by understanding the salinity variation characteristics according to the discharge amount. This will provide stability in collecting water from various residential, agricultural, and industrial sources through water intake facilities scattered near the Nakdong River Estuary Barrage.

Verification of Water Environment Network Representative at the Baekcheon Junction of the Nakdong River (낙동강 백천 합류부 지점의 물환경측정망 대표성 검증)

  • Ahn, Jung Min;Im, Teo Hyo;Kim, Sung Min;Kim, Shin;Kim, Gyeong Hoon;Kwon, Heon Gak;Shin, Dongseok;Yang, Deuk Seok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.371-381
    • /
    • 2018
  • Multifunctional weirs constructed through the Four Major Rivers Restoration Project are operated as management water levels. The purpose of this study was to evaluate the effect of water level in the main stem on the tributary water level according to multifunctional weir operation, because the operation of multifunctional weirs for water level management influences the drainage of tributaries. In this study, water level pressure gauges were installed and spatial and temporal water quality was observed. The LOcally Weighted Scatterplot Smoothing (LOWESS) technique was applied to the Nakdong River and the Baekcheon Junction, both upstream of the Gangjeong-Goryeong weir, in order to analyze water quality trends. When considering the overall analysis and observations, it was found that the water quality forecasting point located at the Baekcheon estuary point should be transferred to the Dosung Bridge, which is located upstream of the Sunwon Bridge.

Development and Application of the Grid-Distributed Model for Contribution Rate Analysis on Non-point Source Pollution According to Landuse (토지피복별 비점부하량 기여율 해석을 위한 분포형 모델 개발 및 적용)

  • Ahn, Jung-Min;Jung, Kang-Young;Kim, Shin;Lee, Hae-Jin;Shin, Suk-Ho;Yang, Duk-Seok;Shin, Dongseok;Na, Seung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.78-89
    • /
    • 2017
  • Water quality monitoring network data is being affected continuously due to non-point source pollution arising from agricultural land located on the Gwangsancheon outlet in the Nakdong River basin. In this study, we have performed analysis of water quality monitoring system, water quality pattern using SOM and water quality in the Gwangsancheon for sub-basin located at Gisan-myeon in the Nakdong River basin. We have developed and applied the model to estimate the runoff and non-point source loading. As a result of SOM pattern, the effect of non-point source pollution was the largest in the paddy fields and fields. As a result of the developed model, we found contribution rate and reduction rate for non-point source loading according to change of landuse because the reduction effect of nonpoint pollutants was 20.9% of SS, 9.9% of TN, 21.2% of TP and 8.9% of TOC depending on the landuse change.

A Nonparametric Long-Term Trend Analysis Using Water Quality Monitoring Data in Nam-River (남강 수질측정망 자료를 이용한 비모수적 장기 수질 추세 분석)

  • Jung, Kang-Young;Kim, Myojeong;Song, Kwang Duck;Seo, Kwon Ok;Hong, Seong Jo;Cho, Sohyun;Lee, Yeong Jae;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1029-1048
    • /
    • 2018
  • In this study, seasonal Mann - Kendall test method was applied to 12 stations of the water quality measurement network of Nam-River based on data of BOD, COD, TN and TP for 11 years from January 2005 to December 2015 The changes of water quality at each station were examined through linear trends and the tendency of water quality change during the study period was analyzed by applying the locally weighted scatter plot smoother (LOWESS) method. In addition, spatial trends of the whole Nam-River were examined by items. The flow-adjusted seasonal Kendall test was performed to remove the flow at the water quality measurement station. As a result, BOD, COD concentration showed "no trand" and TN and TP concentration showed "down trand" in regional Kendall test throughout the study period. BOD and TP concentration in "no trand", COD, and TN concentration showed an "up trand" tendency in Nam-River dam. LOWESS analysis showed no significant water quality change in most of the analysis items and stations, but water quality fluctuation characteristics were shown at some stations such as NR1 (Kyungho-River 1), NR2 (Kyungho-River 2), NR3 (Nam-River), NR6 (Nam-River 2A). In addition, the flow-adjusted seasonal Kendall results showed that the BOD concentration was "up trand" due to the flow at the NR3 (Nam-River) station. The COD concentration was "up trand" due to the flow at NR1 (Kyungho-River 1) and NR2 (Kyungho-River 2) located upstream of the Nam-River. The effect of influent flow on water quality varies according to each site and analysis item. Therefore, for the effective water quality management in the Nam-River, it is necessary to take measures to improve the water quality at the point where the water quality is continuously "up trand" during the study period.

Application of nightlight satellite imagery for assessing flooding potential area in the Mekong river basin (메콩강 홍수위험분석을 위한 나이트라이트 위성영상 적용성 검토)

  • Try, Sophal;Lee, Daeup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.565-574
    • /
    • 2018
  • High population density in deltaic settings, especially in Asia, tends to increase and causes coastal flood risk because of lower elevations and significant subsidence. Large flood annually causes numerous deaths and huge economic losses. In this paper, an innovative technology of spatial satellite imagery has been used as tool to analyze the socio-economic flood-related damage in Mekong river basin. The relationship between nightlight intensity and flood damages has been determined for the period of 1992-2013 with a spatial resolution of 30 arc sec ($0.0083^{\circ}$), which is nearly one kilometer at the equator. Flow path distance was calculated to identify the distance of each cell to river network and to examine how nightlight intensity correlate to the area close to and far from river network. Statistical analysis results highlight the significant correlation between nocturnal luminosity intensity and flood-related damages in countries along the Mekong river (i.e., Cambodia, China, Lao PDR, Thailand, and Vietnam). This result reveals that the areas close to the river network correspond to high human distribution and causes huge damage during flooding. The result may provide key information to the region with respect to decisions, attentions, and mitigation strategies.

Development of Pollutant Transport Model Working In GIS-based River Network Incorporating Acoustic Doppler Current Profiler Data (ADCP자료를 활용한 GIS기반의 하천 네트워크에서 오염물질의 이송거동모델 개발)

  • Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.551-560
    • /
    • 2009
  • This paper describes a newly developed pollutant transport model named ARPTM which was designed to simulate the transport and characteristics of pollutant materials after an accidental spill in upstream of river system up to a given position in the downstream. In particular, the ARPTM incorporated ADCP data to compute longitudinal dispersion coefficient and advection velocity which are necessary to apply one-dimensional advection-dispersion equation. ARPTM was built on top of the geographic information system platforms to take advantage of the technology's capabilities to track geo-referenced processes and visualize the simulated results in conjunction with associated geographic layers such as digital maps. The ARPTM computes travel distance, time, and concentration of the pollutant cloud in the given flow path from the river network, after quickly finding path between the spill of the pollutant material and any concerned points in the downstream. ARPTM is closely connected with a recently developed GIS-based Arc River database that stores inputs and outputs of ARPTM. ARPTM thereby assembles measurements, modeling, and cyberinfrastructure components to create a useful cyber-tool for determining and visualizing the dynamics of the clouds of pollutants while dispersing in space and time. ARPTM is expected to be potentially used for building warning system for the transport of pollutant materials in a large basin.

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK MODELS SUPPORTING RESERVOIR OPERATION FOR THE CONTROL OF DOWNSTREAM WATER QUALITY

  • Chung, Se-Woong;Kim, Ju-Hwan
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • As the natural flows in rivers dramatically decrease during drought season in Korea, a deterioration of river water quality is accelerated. Thus, consideration of downstream water quality responding to changes in reservoir release is essential for an integrated watershed management with regards to water quantity and quality. In this study, water quality models based on artificial neural networks (ANNs) method were developed using historical downstream water quality (rm $\NH_3$-N) data obtained from a water treatment plant in Geum river and reservoir release data from Daechung dam. A nonlinear multiple regression model was developed and compared with the ANN models. In the models, the rm NH$_3$-N concentration for next time step is dependent on dam outflow, river water quality data such as pH, alkalinity, temperature, and rm $\NH_3$-N of previous time step. The model parameters were estimated using monthly data from Jan. 1993 to Dec. 1998, then another set of monthly data between Jan. 1999 and Dec. 2000 were used for verification. The predictive performance of the models was evaluated by comparing the statistical characteristics of predicted data with those of observed data. According to the results, the ANN models showed a better performance than the regression model in the applied cases.

  • PDF