• 제목/요약/키워드: Ritz model

검색결과 89건 처리시간 0.019초

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements

  • Phuor, Ty;Yoon, GilHo
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.411-428
    • /
    • 2022
  • This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.

가진 주파수에 종속적인 시스템을 위한 효율적인 모델축소법 개발 (Development of efficient model order reduction for frequency dependent system)

  • 윤길호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.685-688
    • /
    • 2011
  • 본 논문에서는 다양한 음향 가진에 따른 음향 응답을 유한 요소법을 통하여 효과적으로 계산하기 위한 새로운 모델 축소법을 제안한다. 일반적인 유한 요소법을 통한 기계구조물의 응답을 구하기 위해서는 음향 방정식의 강성 및 행렬을 구한 뒤 이들의 조합을 통한 동적 강성행렬을 구한 뒤 역행렬을 구하여 다양한 주파수 응답을 구하게 된다. 현재 컴퓨터 하드웨어의 발전과 소프트 웨어의 발전에 의하여 더 많은 유한 요소를 사용할 수 있게 되었고 이로 인하여 더욱 정확하고 넓은 대역의 음향 응답을 구할 수 있게 되었다. 그러나, 아직까지도 아주 복잡한 구조물의 음향 응답을 구하기 위하여 유한 요소를 무한정으로 증가할 수 없는 경우가 많다. 이를 해결하기 위하여 일반적으로 모델 축소법(Model order reduction) 기법을 사용한다. 이 모델 축소법은 기본적으로 전체 행렬을 아주 작지만 효율적인 작은 행렬로 바꾸어 응답을 예측하는 기법으로 mode superposition method, ritz vector method, quasi-static ritz vector method등이 있다. 기존의 모델 축소법은 기본적으로 질량 및 강성행렬이 가진 주파수에 영향을 받지 않는 행렬이라 가정한다. 그렇기 때문에 경계조건이나 다공성 재료를 모델링할 경우 가진 주파수에 영향을 받는 강성행렬과 질량행렬이 만들어지게 되어 기존의 모델 축소법은 효과적이지 못하게 된다. 이런 문제점을 해결하기 위하여 이 논문에서는 Quasi-static ritz vector method의 기본적인 개념을 확장하여 여러 개의 중심 주파수(Center frequency)에서 기저를 계산하고 이를 동시에 이용하는 Multi-frequency quasi-static ritz vector method를 제안한다.

  • PDF

Rayleigh-Ritz법을 이용한 샌드위치 패널의 진동 및 소음방사 특성 분석 (An Analysis of Vibration and Sound Radiation of Sandwich Panels Using the Rayleigh-Ritz Method)

  • 김동규;김재현;전진용;박준홍
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.430-436
    • /
    • 2011
  • The purpose of this study is to analyze the vibration and sound generation characteristics of the sandwich panel. Two thick panels were assumed to be separated by a compliant viscoelastic core. The transverse vibration induced by an external impact was analyzed using the Rayleigh-Ritz method. For applying arbitrary boundary condition of the panels, the edges were assumed to be supported by the translational and rotational springs. The beam functions were used as the trial functions. The effect of the boundary condition and viscoelastic core on the resulting vibration characteristics was investigated. The radiated sound power was analyzed using the proposed numerical model and the Rayleigh integral. The dynamic properties of the core and the mass-stiffness-mass resonance frequency had significant influence on the impact sound.

Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method

  • Ahmed, Ridha A.;Mustafa, Nader M.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.413-420
    • /
    • 2020
  • Considering inverse cotangential shear strain function, the present paper studies nonlinear stability of nonlocal higher-order refined beams made of metal foams based on Chebyshev-Ritz method. Based on inverse cotangential beam model, it is feasible to incorporate shear deformations needless of shear correction factor. Metal foam is supposed to contain different distributions of pores across the beam thickness. Also, presented Chebyshev-Ritz method can provide a unified solution for considering various boundary conditions based on simply-supported and clamped edges. Nonlinear effects have been included based upon von-karman's assumption and nonlinear elastic foundation. The buckling curves are shown to be affected by pore distribution, geometric imperfection of the beam, nonlocal scale factor, foundation and geometrical factors.

Numerical study on thin plates under the combined action of shear and tensile stresses

  • Sathiyaseelan, S.;Baskar, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.867-882
    • /
    • 2012
  • Analytical (Rayleigh-Ritz method) and numerical studies are carried out and buckling interaction curves are developed for simply supported plates of varying aspect ratios ranging from 1 to 5, under the combined action of in-plane shear and tension. A multi-step buckling procedure is employed in the Finite Element (FE) model instead of a regular single step analysis in view of obtaining the buckling load under the combined forces. Both the analytical (classical) and FE studies confirm the delayed shear buckling characteristics of thin plate under the combined action of shear and tension. The interaction curves are found to be linear and are found to vary with plate aspect ratio. The interaction curve developed using Rayleigh-Ritz method is found to deviate in an increasing trend from that of validated FE model as plate aspect ratio is increased beyond value of 1. It is found that the observed deviation is due to the insufficient number of terms that is been considered in the assumed deflection function of Rayleigh-Ritz method and a convergence study is suggested as a solution.

캔틸레버 복합 적층판의 3차원 진동해석 (Three-Dimensional Vibration Analysis of Cantilevered Laminated Composite Plates)

  • 김주우;정희영
    • 한국전산구조공학회논문집
    • /
    • 제14권3호
    • /
    • pp.299-308
    • /
    • 2001
  • 본 논문은 캔틸레버 복합 적층판의 고유진동에 대하여 3차원으로 해석한 연구를 제시하고 있다. 본 연구에서는 고정단에서의 경계조건을 엄밀히 만족하고 수학적으로 완전한 다항식으고 표현되는 근사 변위와 Ritz 방법을 이용하여 Lagrangian범함수의 정상값을 구하였다. 3차원 모델의 정확도는 무차원 진동수의 수렴연구를 통하여 이루어졌으며, 또한 기존 문헌상의 해석 및 실험 결과와의 비교를 통하여 본 연구 결과의 정확성을 검토하였다. 본 논문에서 제시된 3차원 진동수의 결과를 이용하여 캔틸레버 복합 적층판의 기하학 및 재료 매개변수 즉, 형상비(a/b), 폭두께비(a/h), 재료의 직교 이방성, 플라이 수(NP), 섬유 배향각(θ), 및 적층 순서가 미치는 효과를 설명하였다.

  • PDF

케이블 지지된 풍력발전기 타워 구조 모델의 진동해석 (Vibration Analysis of a Cable Supported Wind Turbine Tower Model)

  • 김석현;박무열;최승훈
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

Rayleigh-Ritz 방법에 의한 흡음재가 부착된 직방형 소음기의 전달 손실 예측 (Prediction of the Transmission Loss of Rectangular Lined Plenum Chamber by the Rayleigh-Ritz Method)

  • 김회전;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.869-872
    • /
    • 2005
  • The purpose of this study is on the prediction of the acoustic performance of the lined rectangular plenum chamber which can be used in the HVAC systems. The lined plenum chamber is modeled as a piston driven rectangular tube without mean flow and the acoustic pressure in the lined chamber is obtained by superposing the three dimensional pressure due to each of uniformly and harmonically fluctuating pistons. The arbitrary locations of inlet/outlet ports as well as the acoustic higher order modes generated at the area discontinuities of the port chamber interfaces are taken into consideration. The four-pole parameters can be derived by imposing the proper boundary conditions on each inlet and outlet ports. The lining material on the internal wall is assumed to be a bulk-reacting model. A single weak variation statement which satisfies the fluctuating rigid piston condition and the pressure and displacement continuity condition at the interface between the lining material and the airway was developed. The set of cosine functions were used as the admissible function when applying the Rayleigh-Ritz method. Computed results are compared with those predicted by using the locally-reacting lining material and experimental results, respectively. There are a good agreement shown between the results by the Rayleigh-Ritz method and the experiment results. The derived transfer matrices can be easily combined with other four-pole parameters of different types of mufflers for the calculation of the whole system performance.

  • PDF

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

FREE VIBRATION ANALYSIS OF PERFORATED PLATE WITH SQUARE PENETRATION PATTERN USING EQUIVALENT MATERIAL PROPERTIES

  • JHUNG, MYUNG JO;JEONG, KYEONG HOON
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.500-511
    • /
    • 2015
  • In this study, the natural frequencies of the perforated square plate with a square penetration pattern are obtained as a function of ligament efficiency using the commercial finite-element analysis code ANSYS. In addition, they are used to extract the effective modulus of elasticity under an assumption of a constant Poisson's ratio. The effective modulus of elasticity of the fully perforated square plate is applied to the modal analysis of a partially perforated square plate using a homogeneous finite-element analysis model. The natural frequencies and the corresponding mode shapes of the homogeneous model are compared with the results of the detailed finite-element analysis model of the partially perforated square plate to check the validity of the effective modulus of elasticity. In addition, the theoretical method to calculate the natural frequencies of a partially perforated square plate with fixed edges is suggested according to the Rayleigh-Ritz method.