Browse > Article
http://dx.doi.org/10.12989/sem.2022.81.4.411

Model order reduction for Campbell diagram analysis of shaft-disc-blade system in 3D finite elements  

Phuor, Ty (School of Mechanical Engineering, Hanyang University)
Yoon, GilHo (School of Mechanical Engineering, Hanyang University)
Publication Information
Structural Engineering and Mechanics / v.81, no.4, 2022 , pp. 411-428 More about this Journal
Abstract
This paper presents the Campbell diagram analysis of the rotordynamic system using the full order model (FOM) and the reduced order model (ROM) techniques to determine the critical speeds, identify the stability and reduce the computational time. Due to the spin-speed-dependent matrices (e.g., centrifugal stiffening matrix), several model order reduction (MOR) techniques may be considered, such as the modal superposition (MS) method and the Krylov subspace-based MOR techniques (e.g., Ritz vector (RV), quasi-static Ritz vector (QSRV), multifrequency quasi-static Ritz vector (MQSRV), multifrequency/ multi-spin-speed quasi-static Ritz vector (MMQSRV) and the combined Ritz vector & modal superposition (RV+MS) methods). The proposed MMQSRV method in this study is extended from the MQSRV method by incorporating the rotational-speed-dependent stiffness matrices into the Krylov subspace during the MOR process. Thus, the objective of this note is to respond to the question of whether to use the MS method or the Krylov subspace-based MOR technique in establishing the Campbell diagram of the shaft-disc-blade assembly systems in three-dimensional (3D) finite element analysis (FEA). The Campbell diagrams produced by the FOM and various MOR methods are presented and discussed thoroughly by computing the norm of relative errors (ER). It is found that the RV and the MS methods are dominant at low and high rotating speeds, respectively. More precisely, as the spinning velocity becomes large, the calculated ER produced by the RV method is significantly increased; in contrast, the ER produced by the MS method is smaller and more consistent. From a computational point of view, the MORs have substantially reduced the time computing considerably compared to the FOM. Additionally, the verification of the 3D FE rotordynamic model is also provided and found to be in close agreement with the existing solutions.
Keywords
Campbell diagram; Krylov subspace; Modal Superposition (MS); Model Order Reduction (MOR); Multi-frequency/Multi-spin-Speed Quasi-Static Ritz Vector (MMQSRV); Ritz Vector (RV); rotordynamic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rahman, T. and Valdman, J. (2013), "Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements", Appl. Math. Comput., 219(13), 7151-7158. https://doi.org/10.1016/j.amc.2011.08.043.   DOI
2 Ma, O. and Wang, J.G. (2007), "Model order reduction for impact-contact dynamics simulations of flexible manipulators", Robotica, 25, 397-407. https://doi.org/10.1017/S026357470600316X.   DOI
3 Chatelet, E., D'Ambrosio, F. and Jacquet-Richardet, G. (2005), "Toward global modelling approaches for dynamic analyses of rotating assemblies of turbomachines", J. Sound Vib., 282(1-2), 163-178. https://doi.org/10.1016/j.jsv.2004.02.035.   DOI
4 Bladh, R., Castanier, M.P. and Pierre, C. (2001), "Component-mode-based reduced order modeling techniques for mistuned bladed disks-Part 1: Theoretical models", J. Eng. Gas Turbin. Power, 123(1), 89-99. https://doi.org/10.1115/1.1338947.   DOI
5 Castanier, M.P. and Pierre, C. (2002), "Using intentional mistuning in the design of turbomachinery rotors", AIAA J., 40(10), 2077-2086. https://doi.org/10.2514/2.1542.   DOI
6 Crawely, E.F., Ducharme, E.H. and Mokadam, D.R. (1986), "Analytical and experimental investigation of the coupled bladed disk/shaft whirl of a cantilevered turbofan", J. Eng. Gas Turbin. Power, 108, 567-575. https://doi.org/10.1115/1.3239948.   DOI
7 Feiner, D.M. and Griffin, J.H. (2002), "A fundamental model of mistuning for a single family of modes", J. Turbomach., 124(4), 597-605. https://doi.org/10.1115/1.1508384.   DOI
8 Genta, G. (2005), Dynamics of Rotating System, Springer Science & Business Media, New York, USA.
9 Genta, G. and Gugliotta, A. (1988), "A conical element for finite element rotor dynamics", J. Sound Vib., 120(1), 175-182. https://doi.org/10.1016/0022-460X(88)90342-2.   DOI
10 Saito, A., Castanier, M.P. and Pierre, C. (2009), "Effects of a cracked blade on mistuned turbine engine rotor vibration", J. Vib. Acoust., Trans., ASME, 131(6), 061006-9. https://doi.org/10.1115/1.4000458.   DOI
11 Kirchgassner, B. (2016), "Finite elements in rotordynamics", Procedia Eng., 144, 736-750. https://doi.org/10.1016/j.proeng.2016.05.079.   DOI
12 Han, J.S. (2014), "Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems", Struct. Eng. Mech., 50(1), 19-36. https://doi.org/10.12989/sem.2014.50.1.019.   DOI
13 Huang, S.C. and Ho, K.B. (1996), "Coupled shaft-torsion and blade-bending vibrations of a rotating shaft-disk-blade unit", J. Eng. Gas Turbin. Power, 118, 100-106. https://doi.org/10.1115/1.2816524.   DOI
14 Khulief, Y.A. and Mohiuddin, M.A. (1997), "On the dynamic analysis of rotors using modal reduction", Finite Elem. Anal. Des., 26(1), 41-55. https://doi.org/10.1016/S0168-874X(96)00070-4.   DOI
15 Koh, H.S., Kim, J.H. and Yoon, G.H. (2020), "Efficient topology optimization of multicomponent structure using substructuring-based model order reduction method", Comput. Struct., 228, 106146. https://doi.org/10.1016/j.compstruc.2019.106146.   DOI
16 Lazarus, A., Prabel, B. and Combescure, D. (2010), "A 3D finite element model for the vibration analysis of asymmetric rotating machines", J. Sound Vib., 329(18), 3780-3797. https://doi.org/10.1016/j.jsv.2010.03.029.   DOI
17 Nelson, H.D. (1980), "A finite rotating shaft element using Timoshenko beam theory", J. Mech. Des., Trans., ASME, 102(4), 793-803. https://doi.org/10.1115/1.3254824.   DOI
18 Petrov, E.P., Zachariadis, Z.I., Beretta, A. and Elliott, R. (2013), "A study of nonlinear vibrations in a frictionally damped turbine bladed disk with comprehensive modeling of aerodynamic effects", J. Eng. for Gas Turbin. Power, 135(3), 032504-11. https://doi.org/10.1115/1.4007871.   DOI
19 Li, C., She, H., Tang, Q. and Wen, B. (2019), "The coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features", Appl. Math. Model., 67, 557-572. https://doi.org/10.1016/j.apm.2018.09.041.   DOI
20 Lim, S.H., Bladh, R., Castanier, M.P. and Pierre, C. (2007), "Compact, generalized component mode mistuning representation for modeling bladed disk vibration", AIAA J., 45(9), 2285-2298. https://doi.org/10.2514/1.13172.   DOI
21 Gruttmann, F. and Wagner, W. (2004), "A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element", Int. J. Numer. Meth. Eng., 61, 2273-2295. https://doi.org/10.1002/nme.1148.   DOI
22 Gu, J., Ma, Z.D. and Hulbert, M.G. (2000), "New load-dependent Ritz vector method for structural dynamics analyses: Quasi-static Ritz vectors", Finite Elem. Anal. Des., 36, 261-278. https://doi.org/10.1016/S0168-874X(00)00036-6.   DOI
23 Phuor, T., Harahap, I.S.H. and Ng, C.Y. (2021b), "Bearing capacity factors for rough conical footing by viscoplasticity finite element analysis", ASCE Int. J. Geomech., 22(1), 04021266. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002256.   DOI
24 Vollan, A. and Komzsik, L. (2012), Computational Techniques of Rotor Dynamics with the Finite Element Method, CRC Press.
25 Martel, C. and Sanchez-Alvarez, J.J. (2018), "Intentional mistuning effect in the forced response of rotors with aerodynamic damping", J. Sound Vib., 433, 212-229. https://doi.org/10.1016/j.jsv.2018.07.020.   DOI
26 Mogenier, G., Baranger, T., Ferraris, G., Dufour, R. and Durantay, L. (2014), "A criterion for mode shape tracking: Application to Campbell diagrams", J. Vib. Control, 20(2), 179-190. https://doi.org/10.1177/1077546312463714.   DOI
27 Stephenson, R.W. and Rouch, K.E. (1993), "Modeling rotating shafts using axisymmetric solid finite elements with matrix reduction", J. Vib. Acoust., Trans., ASME, 115(4), 484-489. https://doi.org/10.1115/1.2930376.   DOI
28 Wagner, M.B., Younan, A., Allaire, P. and Cogill, R. (2010), "Model reduction methods for rotor dynamic analysis: A survey and review", Int. J. Rotat. Mach., 2010, Article ID 273716. https://doi.org/10.1155/2010/273716.   DOI
29 Wang, S., Wang, Y., Zi, Y. and He, Z. (2015), "A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems", J. Sound Vib., 359, 115-135. https://doi.org/10.1016/j.jsv.2015.08.027.   DOI
30 Wang, S., Wang, Y., Zi, Y., Li, B. and He, Z. (2015), "Reduced-order modeling for rotating rotor-bearing systems with cracked impellers using three-dimensional finite element models", J. Sound Vib., 355, 305-321. https://doi.org/10.1016/j.jsv.2015.06.037.   DOI
31 Yang, M.T. and Griffin, J.H. (2001), "A reduced-order model of mistuning using a subset of nominal system modes", J. Eng. Gas Turbin. Power, 123(4), 893-900. https://doi.org/10.1115/1.1385197.   DOI
32 Wang, S., Bi, C.X. and Zheng, C.J. (2019), "A reduced-order model for the vibration analysis of mistuned blade-disc-shaft assembly", Appl. Sci., 9(22), 4762. https://doi.org/10.3390/app9224762.   DOI
33 Nandi, A. (2004), "Reduction of finite element equations for a rotor model on non-isotropic spring support in a rotating frame", Finite Elem. Anal. Des., 40(9-10), 935-952. https://doi.org/10.1016/S0168-874X(03)00121-5.   DOI
34 She, H., Li, C., Tang, Q. and Wen, B. (2018), "The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration", Mech. Syst. Signal Pr., 111, 545-569. https://doi.org/10.1016/j.ymssp.2018.03.044.   DOI
35 Vest, T.A. and Darlow, M.S. (1990), "A modified conical beam element based on finite element analysis: Experimental correlations", J. Vib. Acoust., Trans., ASME, 112(3), 350-354. https://doi.org/10.1115/1.2930515.   DOI
36 Wang, S., Zi, Y., Li, B., Zhang, C. and He, Z. (2014), "Reduced-order modeling for mistuned centrifugal impellers with crack damages", J. Sound Vib., 333(25), 6979-6995. https://doi.org/10.1016/j.jsv.2014.07.009.   DOI
37 Yoon, G.H. (2010), "Structural topology optimization for frequency response problem using model reduction schemes", Comput. Meth. Appl. Mech. Eng., 199(25-28), 1744-1763. https://doi.org/10.1016/j.cma.2010.02.002.   DOI
38 Nelson, H.D. and McVaugh, J.M. (1976), "The dynamics of rotor-bearing systems using finite elements", J. Mech. Des., Trans., ASME, 98(2), 593-600. https://doi.org/10.1115/1.3438942.   DOI
39 Yoon, G.H., Kim, J.H., Jung, K.O. and Jung, J.W. (2015), "Transient quasi-static Ritz vector (TQSRV) method by Krylov subspaces and eigenvectors for efficient contact dynamic finite element simulation", Appl. Math. Model., 39(9), 2740-2762. https://doi.org/10.1016/j.apm.2014.10.059.   DOI
40 Yoon, G.H. (2012), "Toward a multifrequency quasi-static Ritz vector method for frequency-dependent acoustic system application", Int. J. Numer. Meth. Eng., 89, 1451-1470. https://doi.org/10.1002/nme.3301.   DOI
41 Yuan, J., Scarpa, F., Allegri, G., Titurus, B., Patsias, S. and Rajasekaran, R. (2017), "Efficient computational techniques for mistuning analysis of bladed discs: A review", Mech. Syst. Signal Pr., 87, 71-90. https://doi.org/10.1016/j.ymssp.2016.09.041.   DOI
42 Wilson, E.L., Yuan, M.W. and Dickens, J.M. (1982), "Dynamic analysis by direct superposition of Ritz Vectors", Earthq. Eng. Struct. Dyn., 10(6), 813-821. https://doi.org/10.1002/eqe.4290100606.   DOI
43 Nandi, A. and Neogy, S. (2001), "Modelling of rotors with three-dimensional solid finite elements", J. Strain Anal. Eng. Des., 6(4), 359-371. https://doi.org/10.1243/0309324011514539.   DOI
44 Nelson, F.C. (2007), "Rotor dynamics without equations", Int. J. COMADEM, 10(3), 2-10.
45 Okabe, A., Otawara, Y., Kaneko, R., Matsushita, O. and Namura, K. (1991), "An equivalent reduced modelling method and its application to shaft-blade coupled torsional vibration analysis of a turbine-generator set", Proc. Inst. Mech. Eng., Part A: J. Pow. Energy, 205, 173-181. https://doi.org/10.1243/PIME_PROC_1991_205_026_02.   DOI
46 Phuor, T. (2020), "Development and application of three-dimensional finite element interface model for soil-jack-up interaction during preloading", PhD Thesis, Universiti Teknologi Petronas.
47 Phuor, T., Harahap, I.S., Ng, C.Y. and Al-Bared, M.A.M. (2021a), "Development and of the skew boundary condition for soil-structure interaction in three-dimensional finite element analysis", Comput. Geotech., 137, 104264. https://doi.org/10.1016/j.compgeo.2021.104264.   DOI
48 Sternchuss, A. (2009), "Multi-level parametric reduced models of rotating bladed disk assemblies", Ecole Centrale Paris.