• Title/Summary/Keyword: Ritz Method

Search Result 329, Processing Time 0.021 seconds

Free vibrations of arbitrary quadrilateral thick plates with internal columns and uniform elastic edge supports by pb-2 Ritz method

  • Wu, L.H.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.267-288
    • /
    • 2012
  • Free vibration analysis of arbitrary quadrilateral thick plates with internal columns and elastic edge supports is presented by using the powerful pb-2 Ritz method and Reddy's third order shear deformation plate theory. The computing domain of arbitrary quadrilateral planform is mapped onto a standard square form by coordinate transformation. The versatile pb-2 Ritz functions defined by the product of a two-dimensional polynomial and a basic function are taken to be the admissible functions. Substituting these displacement functions into the energy functional and minimizing the total energy by differentiation, leads to a typical eigenvalue problem, which is solved by a standard eigenvalue solver. Stiffness and mass matrices are numerically integrated over the plate by using Gaussian quadrature. The accuracy and efficiency of the proposed method are demonstrated through several numerical examples by comparison and convergency studies. A lot of numerical results for reasonable natural frequency parameters of quadrilateral plates with different combinations of elastic boundary conditions and column supports at any locations are presented, which can be used as a benchmark for future studies in this area.

Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method

  • Ahmed, Ridha A.;Mustafa, Nader M.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • Considering inverse cotangential shear strain function, the present paper studies nonlinear stability of nonlocal higher-order refined beams made of metal foams based on Chebyshev-Ritz method. Based on inverse cotangential beam model, it is feasible to incorporate shear deformations needless of shear correction factor. Metal foam is supposed to contain different distributions of pores across the beam thickness. Also, presented Chebyshev-Ritz method can provide a unified solution for considering various boundary conditions based on simply-supported and clamped edges. Nonlinear effects have been included based upon von-karman's assumption and nonlinear elastic foundation. The buckling curves are shown to be affected by pore distribution, geometric imperfection of the beam, nonlocal scale factor, foundation and geometrical factors.

Genetic optimization of vibrating stiffened plates

  • Marcelin, Jean Luc
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.529-541
    • /
    • 2006
  • This work gives an application of stochastic techniques for the optimization of stiffened plates in vibration. The search strategy consists of substituting, for finite element calculations in the optimization process, an approximate response from a Rayleigh-Ritz method. More precisely, the paper describes the use of a Rayleigh-Ritz method in creating function approximations for use in computationally intensive design optimization based on genetic algorithms. Two applications are presented; their deal with the optimization of stiffeners on plates by varying their positions, in order to maximize some natural frequencies, while having well defined dimensions. In other words, this work gives the fundamental idea of using a Ritz approximation to the response of a plate in vibration instead of finite element analysis.

An Analysis of Vibration and Sound Radiation of Sandwich Panels Using the Rayleigh-Ritz Method (Rayleigh-Ritz법을 이용한 샌드위치 패널의 진동 및 소음방사 특성 분석)

  • Kim, Dong-Kyu;Kim, Jae-Hyun;Jeon, Jin-Yong;Park, Jun-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • The purpose of this study is to analyze the vibration and sound generation characteristics of the sandwich panel. Two thick panels were assumed to be separated by a compliant viscoelastic core. The transverse vibration induced by an external impact was analyzed using the Rayleigh-Ritz method. For applying arbitrary boundary condition of the panels, the edges were assumed to be supported by the translational and rotational springs. The beam functions were used as the trial functions. The effect of the boundary condition and viscoelastic core on the resulting vibration characteristics was investigated. The radiated sound power was analyzed using the proposed numerical model and the Rayleigh integral. The dynamic properties of the core and the mass-stiffness-mass resonance frequency had significant influence on the impact sound.

Free Vibration Analysis of a Circular Plate Submerged in a Fluid-filled Rigid Cylinder (유체로 채워진 강체 실린더에 잠긴 원판의 고유진동 해석)

  • Jeong, Kyeong-Hoon;Choi, Suhn;Jhung, Myung-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.921-925
    • /
    • 2003
  • An analytical method for the free vibration of single circular plate submerged in a fluid-filled rigid cylindrical vessel was developed by the Rayleigh-Ritz method based on the Fourier-Bessel series expansion. It was assumed that the plate is clamped at an offcentered location of the cylinder, and the non-viscous incompressible fluid contained in the cylinder is bisected by the plate. It was found that the theoretical results can predict well the fluid-coupled natural frequencies with excellent accuracy comparing with the finite element analysis results. The offcentered distance effect on the natural frequencies was also observed.

  • PDF

Dynamic Analysis of Large Structures by Component Mode Method using Lanczos Algorithm and Ritz Vector (Lanczos알고리즘과 Ritz Vector를 이용한 Component Mode Method에 의한 거대구조물의 동적해석)

  • 심재수;황의승;박태현
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.115-120
    • /
    • 1996
  • The main concern of numerical dynamic analysis of large structures is to find an acceptable solution with fewer mode shapes and less computational efforts. Component mode method utilizes substructure technique to reduce the degree of freedom but have a disadvantage to not consider the dynamic characteristics of loads. Ritz Vector method consider the load characteristics but requires many integrations and errors are accumulated. In this study, to improve the effectiveness of component mode method, Lanczos algorithm is introduced. To prove the effectiveness of this method, example structure are analyzed and the results are compared with SAP90.

  • PDF

Prediction of the Transmission Loss of Rectangular Lined Plenum Chamber by the Rayleigh-Ritz Method (Rayleigh-Ritz 방법에 의한 흡음재가 부착된 직방형 소음기의 전달 손실 예측)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.869-872
    • /
    • 2005
  • The purpose of this study is on the prediction of the acoustic performance of the lined rectangular plenum chamber which can be used in the HVAC systems. The lined plenum chamber is modeled as a piston driven rectangular tube without mean flow and the acoustic pressure in the lined chamber is obtained by superposing the three dimensional pressure due to each of uniformly and harmonically fluctuating pistons. The arbitrary locations of inlet/outlet ports as well as the acoustic higher order modes generated at the area discontinuities of the port chamber interfaces are taken into consideration. The four-pole parameters can be derived by imposing the proper boundary conditions on each inlet and outlet ports. The lining material on the internal wall is assumed to be a bulk-reacting model. A single weak variation statement which satisfies the fluctuating rigid piston condition and the pressure and displacement continuity condition at the interface between the lining material and the airway was developed. The set of cosine functions were used as the admissible function when applying the Rayleigh-Ritz method. Computed results are compared with those predicted by using the locally-reacting lining material and experimental results, respectively. There are a good agreement shown between the results by the Rayleigh-Ritz method and the experiment results. The derived transfer matrices can be easily combined with other four-pole parameters of different types of mufflers for the calculation of the whole system performance.

  • PDF

Influence of Boundary Stress Singularities on the Vibration of Clamped and Simply Supported Sectorial Plates With Various Radial Edge Conditions (다양한 방사연단 조건을 갖는 고정 및 단순지지 부채꼴형 평판 진동에 대한 경계응력특이도의 영향)

  • Kim, Joo-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.601-613
    • /
    • 1998
  • This paper reports the first-of-its-kind free vibration solutions for sectorial plates having re-entrant corners causing stress singularities when the circular edge is either clamped or simply supported. The Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. Accurate frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of sector angles.

  • PDF

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.