• 제목/요약/키워드: Risk of Collapse

검색결과 240건 처리시간 0.023초

묘도-광양간 현수교의 선박충돌 방지공의 위험도 분석 및 안정성 평가 (The Risk Analysis and Stability Estimation of Ship Collision Protection of Myodo-Gangyang Suspension Bridge)

  • 장용채;박기철;김경택
    • 해양환경안전학회지
    • /
    • 제15권2호
    • /
    • pp.127-133
    • /
    • 2009
  • 묘도-광양간 현수교는 광양항에 진입하는 항로에 위치해있으므로 큰 배들에 대하여 충돌 방지공이 필요하다. 본 논문은 선박충돌을 고려하여 위험도 분석과 비선형 수치해석을 실시하였다. 위험도 분석 결과 충돌 방지공 설치 이전에는 연간 파괴확률이 기준치인 0.0001을 초과하여 충돌 방지공이 필요한 것으로 분석되었다. 따라서, 선박의 충돌을 방지하기 위해서 인공섬과 콘리트트 블록으로 만든 방파제 벽을 사용하여 설계하였다. 계획된 충돌 방지공 설치 후 비선형 수치해석 결과 교량에 미치는 하중이 교량의 내하력 이내로 나타나 선박 충돌시에도 교량의 안정성이 확보되는 것으로 나타났다.

  • PDF

Estimation and Prediction of Financial Distress: Non-Financial Firms in Bursa Malaysia

  • HIONG, Hii King;JALIL, Muhammad Farhan;SENG, Andrew Tiong Hock
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.1-12
    • /
    • 2021
  • Altman's Z-score is used to measure a company's financial health and to predict the probability that a company will collapse within 2 years. It is proven to be very accurate to forecast bankruptcy in a wide variety of contexts and markets. The goal of this study is to use Altman's Z-score model to forecast insolvency in non-financial publicly traded enterprises. Non-financial firms are a significant industry in Malaysia, and current trends of consolidation and long-term government subsidies make assessing the financial health of such businesses critical not just for the owners, but also for other stakeholders. The sample of this study includes 84 listed companies in the Kuala Lumpur Stock Exchange. Of the 84 companies, 52 are considered high risk, and 32 are considered low-risk companies. Secondary data for the analysis was gathered from chosen companies' financial reports. The findings of this study show that the Altman model may be used to forecast a company's financial collapse. It dispelled any reservations about the model's legitimacy and the utility of applying it to predict the likelihood of bankruptcy in a company. The findings of this study have significant consequences for investors, creditors, and corporate management. Portfolio managers may make better selections by not investing in companies that have proved to be in danger of failing if they understand the variables that contribute to corporate distress.

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.

시지각적 요소를 갖춘 건축물 위험징후 측정 모니터링 시스템 설치 가이드라인 개발연구 (Developing the Installation Guideline of Building Monitoring Systems for Hazardous Symptom Measurements with Visual Perception)

  • 김희재;김근영;신정재
    • 한국재난정보학회 논문집
    • /
    • 제16권2호
    • /
    • pp.374-382
    • /
    • 2020
  • 연구목적: 최근 노후한 안전관리 미비 시설물의 구조적 결함으로 인한 건축물 및 시설물 붕괴사고 등이 발생하고 있다. 본 연구는 전시 공간 건축물의 위험징후를 분석하고 계측기술을 개발하기 위해 시지각적 요소를 갖춘 건축물 센서 모니터링을 위한 최적의 센서 위치를 결정하는 상시 모니터링 시스템 설치가이드라인을 개발하는 것을 목적으로 한다. 연구방법: 위험징후 계측 기기의 구성요소, 설치위치, 기기의 경보 기준, 관리 방안 등을 제시한다. 연구결과: 센서의 위치를 결정하고, 통일된 시지각을 갖춤으로서 분석을 위한 신호처리 기술을 확보하고, Test-bed 운영 통해서 센서 모니터링 기반의 최적 '위험징후 감지장치'를 구성하는 방안을 제시하였다. 결론: 본 연구의 결과는 전시 공간 건축물 붕괴로 발생할 수 있는 재난으로부터 대비하고, 안전관리 역량을 강화에 기여할 수 있다.

u-IT기반 계측정보를 이용한 급경사지붕괴 예측 시스템 개발 (The Development of Landslide Predictive System using Measurement Information based on u-IT)

  • 천동진;박영직;이승호;김정섭;정도영
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5115-5122
    • /
    • 2013
  • 본 논문은 급경사지(산사태 및 사면붕괴, 축대 등)붕괴 등으로 인하여 많은 생명과 재산피해 방지를 목적으로 붕괴 위험성을 감지하고 신속히 대응을 할 수 있도록 하기 위하여 u-IT기반의 급경사지 붕괴예측 감시용 실시간 모니터링 시스템을 개발하였다. 급경사지붕괴 감시에 중요한 계측기로서 강우량 계측기, 간극수압 계측기, 지표변위 계측기, 지중경사 계측기, 함수비계측기, 영상분석 계측기 등을 선정하고 테스트베드에 적용하였다. 각 계측기의 신뢰성 검증에 필요한 동작기능 및 성능확인은 현장에 설치된 계측기 별로 실험을 통하여 확인하였다. 본 연구에서 개발한 급경사지붕괴 감지를 위한 USN기반의 실시간 급경사지 모니터링 시스템을 급경사지 붕괴감지뿐만 아니라 도로변 절개사면과 암반사면 등에 상시계측을 통하여 붕괴위험 예측에도 적용할 수 있으므로 인명피해와 재산피해를 최소할 수 있을 것으로 판단되며, 이 시스템은 본 연구의 시범적용 결과를 바탕으로 급경사지 전역에 확산될 계획에 있다.

Post-earthquake fire performance-based behavior of reinforced concrete structures

  • Behnama, Behrouz;Ronagh, Hamid R.
    • Earthquakes and Structures
    • /
    • 제5권4호
    • /
    • pp.379-394
    • /
    • 2013
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings damaged partially as a result of prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Immediate Occupancy, Life Safety and Collapse Prevention performance levels of structures, designed to the ACI 318-08 code, after they are subjected to an earthquake level with PGA of 0.35g. This investigation is followed by a fire analysis of the damaged structures, examining the time taken for the damaged structures to collapse. As a point of reference, a fire analysis is also performed for undamaged structures and before the occurrence of earthquake. The results indicate that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show that the damaging effects of post-earthquake fire are exacerbated when initiated from the second and third floor. Whilst the investigation is made for a certain class of structures (conventional buildings, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post-earthquake fire into the process of analysis and design, and provides some quantitative measures on the level of associated effects.

A parametric study on the use of passive fire protection in FPSO topside module

  • Friebe, Martin;Jang, Beom-Seon;Jim, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.826-839
    • /
    • 2014
  • Fire is a continuous threat to FPSO topside modules as large amounts of oil and gas are passing through the modules. As a conventional measure to mitigate structural failure under fire, passive fire protection (PFP) coatings are widely used on main structural members. However, an excessive use of PFP coatings can cause considerable cost for material purchase, installation, inspection and maintenance. Long installation time can be a risk since the work should be done nearly at the last fabrication stage. Thus, the minimal use of PFP can be beneficial to the reduction of construction cost and the avoidance of schedule delay. This paper presents a few case studies on how different applications of PFP have influence on collapse time of a FPSO module structure. A series of heat analysis and thermal elasto-plastic FE analysis are performed for different PFP coatings and the resultant collapse time and the amount of PFP coatings are compared with each other.

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.