• Title/Summary/Keyword: Risk Situation Prediction

Search Result 54, Processing Time 0.023 seconds

A Study On Power Data Analysis And Risk Situation Prediction Using Smart Plug (스마트 플러그를 이용한 전력 데이터 분석 및 위험 상황 예측에 관한 연구)

  • Jung, Se Hoon;Kim, June Young;Park, Jun;Jang, Seung Min;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.870-882
    • /
    • 2020
  • It is that failure of equipment at the factory site causes personal injury and property damage. We are required a real-time monitoring and risk forecasting techniques to prevent for equipment failure. In this paper, we proposed a 3-phase smart plug and real-time monitoring system that can be used in factories, and collected environmental information and power information using a smart plug to analyze the data. In order to analyze the correlation between the risk situation and the collected data, we predicted the risk situation using Linear Regression, SVM, and ANN algorithms. As a result, the SVM and ANN algorithms obtained high predictive accuracy and developed a mobile app that could use it to check the risk forecast results.

A framework of Multi Linear Regression based on Fuzzy Theory and Situation Awareness and its application to Beach Risk Assessment

  • Shin, Gun-Yoon;Hong, Sung-Sam;Kim, Dong-Wook;Hwang, Cheol-Hun;Han, Myung-Mook;Kim, Hwayoung;Kim, Young jae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3039-3056
    • /
    • 2020
  • Beaches have many risk factors that cause various accidents, such as drifting and drowning, these accidents have many risk factors. To analyze them, in this paper, we identify beach risk factors, and define the criteria and correlation for each risk factor. Then, we generate new risk factors based on Fuzzy theory, and define Situation Awareness for each time. Finally, we propose a beach risk assessment and prediction model based on linear regression using the calculated risk result and pre-defined risk factors. We use national public data of the Korea Meteorological Administration (KMA), and the Korea Hydrographic and Oceanographic Agency (KHOA). The results of the experiment showed the prediction accuracy of beach risk to be 0.90%, and the prediction accuracy of drifting and drowning accidents to be 0.89% and 0.86%, respectively. Also, through factor correlation analysis and risk factor assessment, the influence of each of the factors on beach risk can be confirmed. In conclusion, we confirmed that our proposed model can assess and predict beach risks.

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Development of the Drop-outs Prediction Model for Intelligent Drop-outs Prevention System

  • Song, Mi-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.9-17
    • /
    • 2017
  • The student dropout prediction is an indispensable for many intelligent systems to measure the educational system and success rate of all university. Therefore, in this paper, we propose an intelligent dropout prediction system that minimizes the situation by adopting the proactive process through an effective model that predicts the students who are at risk of dropout. In this paper, the main data sets for students dropout predictions was used as questionnaires and university information. The questionnaire was constructed based on theoretical and empirical grounds about factor affecting student's performance and causes of dropout. University Information included student grade, interviews, attendance in university life. Through these data sets, the proposed dropout prediction model techniques was classified into the risk group and the normal group using statistical methods and Naive Bays algorithm. And the intelligence dropout prediction system was constructed by applying the proposed dropout prediction model. We expect the proposed study would be used effectively to reduce the students dropout in university.

Considerations for Quantitative Risk Assessment of Landslides using GIS (GIS기반 산사태재해의 정량적 피해 산정을 위한 고려사항 분석)

  • Kim, Jung-Ok;Kim, Ji-Young;Kim, Hyo-Joong;Kim, Yong-Il
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.645-648
    • /
    • 2008
  • This study provides considerations for quantitative risk assessment of landslide on GIS technology. It shows how the landslide possibility analysis is linked by GIS modeling to provide loss estimation tools for landslide hazards in support of socio-economic loss reduction efforts. Those risk assessment results can deliver factual damage situation prediction to policy making for the landslide damage mitigation.

  • PDF

A Study on the Category of Factors for the Landslide Risk Assessment: Focused on Feature Classification of the Digital Map(Ver 2.0) (산사태 위험도 항목 분류에 관한 연구 -수치지도(Ver 2.0) 지형지물 분류체계를 중심으로-)

  • Kim, Jung-Ok;Lee, Jeong-Ho;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.371-374
    • /
    • 2007
  • For development of landslide risk assessment techniques using GIS(Geographic Information System), this study classifies the category of socioeconomic factors. The landslide quantitative risk assessment performs first prediction of flow trajectory and runout distance of debris flow over natural terrain. Based on those results, it can be analyzed the factors of socioeconomic which are directly related to the magnitude of risk due to landslide hazards. Those risk assessment results can deliver factual damage situation prediction to policy making for the landslide damage mitigation. Therefore, this study is based on feature classification of the digital map ver. 2.0 provided by the National Geographic Information Institute. The category of factors can be used as useful data in preventing landslide.

  • PDF

A Basic Study on Prediction Module Development of Collision Risk based on Ship's Operator's Consciousness (선박운항자 의식 기반 충돌 위험도 예측 모듈 개발에 관한 연구)

  • Park, Young-Soo;Park, Sang-Won;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.199-207
    • /
    • 2015
  • In ports of Korea, the marine traffic flow is congested due to a large number of vessels coming in and going out. In order to improve the safety and efficiency of these vessels, South Korea is operating with a Vessel Traffic Service System, which is monitoring its waters for 24 hours. However despite these efforts of the VTS (Vessel Traffic Service) officers, collisions are occurring continuously, the risk situation is analyzed that occurs once in about 20 minutes, the risk may be greater. It investigated to reduce these accidents by providing a safety standard for collision danger in a timely manner. Thus, this study has developed a risk prediction module to predict risk in advance. This module can avoid collision risk to adjust the speed and course of ship using a risk evaluation model based on ship operator's risk perspective. Using this module, the ship operators and VTS officers can easily be identified risks in complex traffic situations, so they can take an appropriate action against danger in near future including course and speed change. To verify the effectiveness of this module, this paper predicted the risk of each encounter situation and confirmed to be capable of identifying a risk changes in specific course and speed changes at Busan coastal water.

Study of Situation Prediction Simulation for Navigation Information System of Ship (선박의 항행정보시스템을 위한 상황 예측 시뮬레이션 방안 연구)

  • Yi, Mi-Ra
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.127-135
    • /
    • 2010
  • Modern marine navigation requires officers on the bridge to monitor a torrent of data on both the insides and outsides of the ship from numerous useful devices. But despite these tools, navigators can still find it difficult to make a safe decision for two reasons: one is that too much data if provided too quickly tends to cause fatigue and overwhelm the officer, and the other is that any inconsistency across data from several different types of devices can lead to confusion. Indeed, the fact remains that the many marine accidents can be attributed to human error, and hence there is a strong need for decision-support tools for marine navigation. One technique of providing decision support is through the use of simulation to evaluate or predict system dynamics over time using an accurate model. This paper, as a simulation method for risk prediction for a navigation safety information system of ship, suggests a navigation prediction simulation system using various knowledge bases and discrete event simulation methodology, and supports the validity of the system through the examples of components in a restricted navigation situation scenario.

A Study on the Anomaly Prediction System of Drone Using Big Data (빅데이터를 활용한 드론의 이상 예측시스템 연구)

  • Lee, Yang-Kyoo;Hong, Jun-Ki;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, big data is rapidly emerging as a core technology in the 4th industrial revolution. Further, the utilization and the demand of drones are continuously increasing with the development of the 4th industrial revolution. However, as the drones usage increases, the risk of drones falling increases. Drones always have a risk of being able to fall easily even with small problems due to its simple structure. In this paper, in order to predict the risk of drone fall and to prevent the fall, ESC (Electronic Speed Control) is attached integrally with the drone's driving motor and the acceleration sensor is stored to collect the vibration data in real time. By processing and monitoring the data in real time and analyzing the data through big data obtained in such a situation using a Fast Fourier Transform (FFT) algorithm, we proposed a prediction system that minimizes the risk of drone fall by analyzing big data collected from drones.

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.