• Title/Summary/Keyword: Risk Estimation

Search Result 971, Processing Time 0.032 seconds

Priority assessment and estimation of annual power generation for potential development site of hydroelectric dam in North Korea (북한지역 수력발전댐 개발가능지점에 대한 연간가능발생전력량 분석 및 개발 우선순위 평가)

  • Kwon, Minsung;Kim, Tae-Woong;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.929-939
    • /
    • 2018
  • In North Korea, hydropower which occupies about 63% of power generation is a major electric power source, and North Korea has many advantages in the geographical for developing hydroelectric power. In this study, Information on the basin and dam capacity for 33 potential development site of hydroelectric dam was analyzed using DEM, and potential annual power generation was estimated by applying results of long-term runoff simulation with MWSWAT model for recent 30-year. The potential annual power generation at 33 dam was estimated to be about 28% of the current hydroelectric power in North Korea. In addition, a priority of dam development in each province was assessed by estimating the scale of an industry and prospecting the population change in the future. And a priority for dam development within the province was estimated based on the dam capacity and the potential annual power generation. The priority of each province was ranked in order of Pyeongannamdo, Hamgyungnamdo, Hamgyungbukdo, Hwanghaebukdo, Pyeonganbukdo, Jagangdo, Ryanggangdo, Hwanghaenamdo, and Gangwondo. The results of this study can be used as an initial review data for advancing to hydropower development project in North Korea.

Estimation of the Optimum Installation Depth of Soil Moisture Sensor in an Automatic Subsurface Drip Irrigation System for Greenhouse Cucumber (시설오이 지중관비시 자동관수센서의 적정 매설깊이)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Noh, Jae-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • Vegetables production in greenhouse are typically intensely managed with high inputs of fertilizers and irrigation water, which increases the risk of ground-water nitrate contamination. In 2010 and 2011, a study was conducted to determine the appropriate depth of soil moisture sensor for automatic irrigation control to use water and nitrogen efficiently under subsurface drip irrigation (SDI) systems. The irrigation line for SDI placed 30 cm below soil surface and tensiometer was used as soil moisture sensor. Three tensiometer treatments placed at 10 (SDI-T10), 20 (SDI-T20) and 30 cm (SDI-T30) depths below soil surface under SDI. These are also compared to SUR-T20 treatment where tensiometer placed at 20 cm below soil surface under surface drip irrigation (SUR) systems. The growth of cucumber was not statistically different between SUR and SDI without SDI-T30 treatment. Fruit yields (Mg/ha) were 57.0 and 56.9 (SDI-T10), 56.0 and 60.5 (SDI-T20), 40.9 and 41.2 (SDI-T30) and 56.6 and 54.3 (SUR-T20) for 2010 and 2011, respectively. Slightly higher total yield was observed in tensiometer placed 20 cm below the soil surface, although no significant differences were found between SDI-T10 and SDI-T20 under SDI treatments. In addition, nitrogen application rates and daily irrigation rates were lowest in SDI-T20 compared with other SDIs and SUR treatments. Nitrogen and daily irrigation application under SDI-T20 was lower than that under SUR-T20 by 6.0%. These findings suggested tensiometer 20 cm depth under SDI systems was best for cucumber production in greenhouse.

Estimation of Manganese Levels in Cord Blood of Pregnant Workers (임신 여성 근로자의 제대혈 중 망간 농도 추정)

  • Lee, Aram;Choi, Kyungho;Kim, Hai-Joong;Lee, Jeong Jae;Choi, Gyuyeon;Kim, Sungjoo;Kim, Su Young;Cho, Geumjoon;Kim, Youg Don;Suh, Eunsook;Kim, Sung Koo;Eun, So-Hee;Eom, Soyong;Kum, Seunghyo;Kim, Gun-Ha;Moon, Hyo-Bang;Kim, Sungkyoon;Choi, Sooran;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.292-303
    • /
    • 2018
  • Objectives: This study aims to analyze manganese (Mn) concentrations in maternal and cord bloods at delivery and to estimate the Mn exposure risk for fetuses whose mothers were occupationally exposed to Mn. Materials and Methods: Forty-six pairs of maternal and cord blood samples were collected at delivery from mothers who were occupationally unexposed to Mn. Mn concentrations of blood were analyzed by graphite furnace atomic absorption spectrometer. Mn exposure levels for fetuses of female workers were estimated by simulating two working exposure scenarios. Results: The geometric mean concentration of Mn in maternal and cord blood were $27.0(1.34){\mu}g/L$, $46.6(1.25){\mu}g/L$, respectively. Transfer ratios of Mn from maternal to cord blood were $1.81{\pm}0.62$, which indicated that the Mn concentrations in cord blood were higher than those in maternal blood. Mn concentrations in cord blood for the worse or general scenarios were estimated to $22.3-1,881{\mu}g/L$ and $1.59-308{\mu}g/L$, respectively. The probabilities of exceeding $74{\mu}g/L$, which was adopted as a reference level reported in a previous study, were 95% and 44% for the two scenarios, respectively. Conclusions: Comparable levels of Mn exposure in maternal or cord blood to those in this study have shown various health effects in previous studies. This suggests that Mn exposure levels in mothers and fetuese in Korea need to be monitored and managed. In addition, female workers who are occupationally exposed to Mn should be protected from the exposure since their fetuses can be exposed to Mn at risky levels during their pregnancy.

Spatial Integration of Multiple Data Sets regarding Geological Lineaments using Fuzzy Set Operation (퍼지집합연산을 통한 다중 지질학적 선구조 관련자료의 공간통합)

  • 이기원;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • Features of geological lineaments generally play an important role at the data interpretation concerned geological processes, mineral exploration or natural hazard risk estimation. However, there are intrinsically discordances between lineaments-related features extracted from surficial geological syrvey and those from satellite imagery;nevertheless, any data set contained those information should not be considred as less meaningful within their own task. For the purpose of effective utilization task of extracted lineaments, the mathematical scheme, based on fuzzy set theory, for practical integration of various types of rasterized data sets is studied. As a real application, the geological map named Homyeong sheet(1:50,000) and the Landset TM imageries covering same area were used, and then lineaments-related data sets such as lineaments on the geological map, lineaments extracted from a false-color image composite satellite, and major drainage pattern were utilized. For data fusion process, fuzzy membership functions of pixel values in each data set were experimentally assigned by percentile, and then fuzzy algebraic sum operator was tested. As a result, integrated lineaments by this well-known operator are regarded as newly-generated reasonable ones. Conclusively, it was thought that the implementation within available GISs, or the stand-alone module for general applications of this simple scheme can be utilized as an effective scheme can be utilized as an effective scheme for further studies for spatial integration task for providing decision-supporting information, or as a kind of spatial reasoning scheme.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Estimation Model for Freight of Container Ships using Deep Learning Method (딥러닝 기법을 활용한 컨테이너선 운임 예측 모델)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.574-583
    • /
    • 2021
  • Predicting shipping markets is an important issue. Such predictions form the basis for decisions on investment methods, fleet formation methods, freight rates, etc., which greatly affect the profits and survival of a company. To this end, in this study, we propose a shipping freight rate prediction model for container ships using gated recurrent units (GRUs) and long short-term memory structure. The target of our freight rate prediction is the China Container Freight Index (CCFI), and CCFI data from March 2003 to May 2020 were used for training. The CCFI after June 2020 was first predicted according to each model and then compared and analyzed with the actual CCFI. For the experimental model, a total of six models were designed according to the hyperparameter settings. Additionally, the ARIMA model was included in the experiment for performance comparison with the traditional analysis method. The optimal model was selected based on two evaluation methods. The first evaluation method selects the model with the smallest average value of the root mean square error (RMSE) obtained by repeating each model 10 times. The second method selects the model with the lowest RMSE in all experiments. The experimental results revealed not only the improved accuracy of the deep learning model compared to the traditional time series prediction model, ARIMA, but also the contribution in enhancing the risk management ability of freight fluctuations through deep learning models. On the contrary, in the event of sudden changes in freight owing to the effects of external factors such as the Covid-19 pandemic, the accuracy of the forecasting model reduced. The GRU1 model recorded the lowest RMSE (69.55, 49.35) in both evaluation methods, and it was selected as the optimal model.

The Economic Effects of Oil Tariff Reduction of Korea-GCC FTA based on VAR Model (VAR모형을 활용한 한-GCC FTA 체결 시 원유관세 인하의 경제적 효과 분석)

  • KIM, Da-Som;RA, Hee-Ryang
    • International Area Studies Review
    • /
    • v.20 no.1
    • /
    • pp.23-51
    • /
    • 2016
  • This study analyzed the expected economic effects of the Korea-GCC FTA and sought strategies for industrial cooperation. To see the economic effects of Korea-GCC FTA, we analysed the effect of the oil tariff reduction of economy by Vector Autoregression(VAR) model. The estimation results shows that following the abolishment of the tariff on crude oil imports, GDP, GNI and consumption are expected to grow by 0.212%, 0.389% and 0.238%, respectively. Meanwhile, investment, export and import are estimated to drop by 0.462%, 0.413% and 0.342%, respectively. As for prices, producer prices are to rise by 6.356%p, whereas consumer prices fall by 2.996%p. In short, the Korea-GCC FTA and resultant abolishment of the tariff on crude oil imports followed by the decline in crude oil prices will result in declining prices whilst macroeconomic indices, such as GDP, GNI and consumption, will increase exerting positive effects on domestic economic growth. Also, it is necessary to proactively respond to GCC member states' industrial diversification policies for FTA-based industrial cooperation to diversify the sources of crude oil and natural gas imports for further resource risk management.

Estimation of PM10 and PM2.5 inhalation dose by travel time and respiratory volume in common transport microenvironments in Seoul, Korea (서울지역 교통수단별 이동시간과 호흡량을 고려한 미세먼지 흡입량 추정에 관한 연구)

  • Lee, Yong-Il;Jung, Wonseck;Hwang, Doyeon;Kim, Taesung;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.97-105
    • /
    • 2018
  • Recently, people's interest in particulate matter (PM) has been increasing, due to its hazardous health effects. The purpose of this study was to investigate the concentrations and as well as the inhaled weight of PM, correlated with person's heart rate in subway, bus, vehicle and bicycle in the major public transportation (Sadang - Jamsil and Nowon - Dongdaemun) in Seoul. The concentration of $PM_{10}$ and $PM_{2.5}$ were measured from each of transportation means and calculated the average concentrations which were 87.2 and $57.8{\mu}g/m^3$ for subway, 62.8 and $42.5{\mu}g/m^3$ for vehicle, 61.5 and $36.8{\mu}g/m^3$ for bus and 53.0 and $29.4{\mu}g/m^3$ for bicycle in $PM_{10}$ and $PM_{2.5}$ respectively. Inhalation dose for $PM_{10}$ and $PM_{2.5}$ were estimated at 248.1 and $139.4{\mu}g$ for bicycle, 56.7 and $39.3{\mu}g$ for vehicle, 49.4 and $29.9{\mu}g$ for bus and 44.3 and $29.1{\mu}g$ for subway, respectively. Even though subway had the highest concentration, the highest inhalation dose was the bicycle. It was due to the long travel time-exposure and breathing rate which leads to maximum of $PM_{10}$ 5.6 and $PM_{2.5}$ with 4.8 times inhalation dose comparing with other modes of transportation. With regards to future studies, the amount of inhalation in each transportation means should be considered in risk assessments of PM.

Estimation of Ventilation Rates in Korean Homes Using Time-activity Patterns and Carbon Dioxide (CO2) Concentration (시간활동양상 및 이산화탄소 농도를 이용한 한국 주택 환기량 추정)

  • Park, Jinhyeon;Ryu, Hyeonsu;Heo, Jung;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Objectives: The purpose of this study was to estimate the ventilation rate of residential homes in Korea through tracer gas methods using indoor and outdoor concentrations of carbon dioxide ($CO_2$) and $CO_2$ generation rates from breathing. Methods: In this study, we calculated the number of occupants in a home by time through data on the average number of people per household from the Korean National Statistical Office and also measured the amount of $CO_2$ generation by breathing to estimate the indoor $CO_2$ generation rate. To estimate the ventilation rate, several factors such as the $CO_2$ generation rate and average volume of residential house provided by the Korean National Statistical Office, indoor $CO_2$ concentrations measured by sensors, and outdoor $CO_2$ concentrations provided by the Korea Meteorological Administration, were applied to a mass balance model for residential indoor environments. Results: The average number of people were 2.53 per household and Koreans spend 61.0% of their day at home. The $CO_2$ generation rate from breathing was $13.9{\pm}5.3L/h$ during sleep and $15.1{\pm}5.7L/h$ in a sedentary state. Indoor and outdoor $CO_2$ concentrations were 849 ppm and 407 ppm, respectively. The ventilation rate in Korean residential houses calculated by the mass balance model were $42.1m^3/h$ and 0.71 air change per hour. Conclusions: The estimated ventilation rate tended to increase with an increase in the number of occupants. Since sensor devices were used to collect data, sustainable data could be collected to estimate the ventilation rate of Korean residential homes, which enables further studies such as on changes in the ventilation rate by season resulting from the activities of occupants. The results of this study could be used as a basis for exposure and risk assessment modeling.

Study on Estimation of Unmanned Enforcement Equipment Installation Criteria and Proper Installation Number (무인교통단속장비 설치 판단 기준 및 설치대수 산정 연구)

  • So, Hyung-Jun;Kim, Yong-Man;Kim, Nam-Seon;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.49-60
    • /
    • 2020
  • The number of traffic control equipment installed to prevent traffic accidents increases every year due to continuous installation by the National Police Agency and local governments. However, it is installed based on qualitative judgment rather than engineering analysis results. The purpose of this study was to present additional installations in the future by presenting the installation criteria considering the severity of accidents for each road type and calculating the appropriate number of installations. ARI indicators that can indicate the severity of traffic accidents were developed, and road types were classified through analysis of variance and cluster analysis, and accident information by road type was analyzed to derive ARI of clusters with high traffic accident severity. The ARI values required to determine the installation of equipment for each road type were presented, and 5,244 additional installation points were analyzed.