DOI QR코드

DOI QR Code

Estimation of the Optimum Installation Depth of Soil Moisture Sensor in an Automatic Subsurface Drip Irrigation System for Greenhouse Cucumber

시설오이 지중관비시 자동관수센서의 적정 매설깊이

  • Lim, Tae-Jun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Ki-In (Department of Soil, Water, and Climate, University of Minnesota) ;
  • Park, Jin-Myeon (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Noh, Jae-Seung (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural & Herbal Science, RDA)
  • 임태준 (국립원예특작과학원 원예특작환경과) ;
  • 김기인 (미네소타대학교 토양, 물 및 대기학과) ;
  • 박진면 (국립원예특작과학원 원예특작환경과) ;
  • 노재승 (국립원예특작과학원 원예특작환경과)
  • Received : 2013.03.07
  • Accepted : 2013.04.08
  • Published : 2013.04.30

Abstract

Vegetables production in greenhouse are typically intensely managed with high inputs of fertilizers and irrigation water, which increases the risk of ground-water nitrate contamination. In 2010 and 2011, a study was conducted to determine the appropriate depth of soil moisture sensor for automatic irrigation control to use water and nitrogen efficiently under subsurface drip irrigation (SDI) systems. The irrigation line for SDI placed 30 cm below soil surface and tensiometer was used as soil moisture sensor. Three tensiometer treatments placed at 10 (SDI-T10), 20 (SDI-T20) and 30 cm (SDI-T30) depths below soil surface under SDI. These are also compared to SUR-T20 treatment where tensiometer placed at 20 cm below soil surface under surface drip irrigation (SUR) systems. The growth of cucumber was not statistically different between SUR and SDI without SDI-T30 treatment. Fruit yields (Mg/ha) were 57.0 and 56.9 (SDI-T10), 56.0 and 60.5 (SDI-T20), 40.9 and 41.2 (SDI-T30) and 56.6 and 54.3 (SUR-T20) for 2010 and 2011, respectively. Slightly higher total yield was observed in tensiometer placed 20 cm below the soil surface, although no significant differences were found between SDI-T10 and SDI-T20 under SDI treatments. In addition, nitrogen application rates and daily irrigation rates were lowest in SDI-T20 compared with other SDIs and SUR treatments. Nitrogen and daily irrigation application under SDI-T20 was lower than that under SUR-T20 by 6.0%. These findings suggested tensiometer 20 cm depth under SDI systems was best for cucumber production in greenhouse.

시설오이 지중관비에서 지중 점적호스를 30 cm에 매설 시에 텐시오미터를 이용한 자동관수센서의 적정 깊이를 제시하고자 2010-2011년까지 2년간에 걸쳐서 조사하였다. 오이의 생육은 텐시오미터 30 cm 깊이에서 낮았으나 텐시오미터 10 및 20 cm에서는 유의성 있는 차이는 없었다. 1년 및 2년차 수량에서도 텐시오미터 30 cm에서 각각 40.9 및 41.2 $Mg\;ha^{-1}$로 가장 적은 생산량을 나타내었나, 텐시오미터 10 cm에서는 57.0 및 56.9 $Mg\;ha^{-1}$, 텐시오미터 20 cm에서는 56.0 및 60.5 $Mg\;ha^{-1}$로 처리간의 차이가 없이 동일한 수량을 나타내었다. 오이재배에서 한 작기 당 질소 및 일일 물 공급량은 63 $kg\;N\;ha^{-1}$의 질소와 1.3 $mm\;day^{-1}$로 물이 공급된 텐시오미터 20 cm 처리에서 질소 및 수분 이용효율이 높았다. 또한 토양깊이 0-30 cm에 대한 뿌리길이에서도 텐시오미터 20 cm에서 0.87 $cm\;cm^{-3}$으로 유의성은 없었지만 가장 높은 값을 나타내었다. 이러한 결과로부터 시설오이에서 지중 점적호스를 30 cm 깊이에 매설 시에 텐시오미터를 활용한 자동관수센서의 적정 깊이는 20 cm인 것으로 판단되었다.

Keywords

References

  1. Al-Omran, A.M., A.S. Sheta, A.M. Falatah, and A.R. Al- Harbi. 2005. Effect of drip irrigation on squash (Cucurbita pepo) yield and water use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manage. 73: 43-55. https://doi.org/10.1016/j.agwat.2004.09.019
  2. Ayars, J.E., C.J. Phene, R.B. Hutmacher, K.R. Davis, R.A. Schoneman, S.S. Vail, R.M. Mead. 1999. Sursurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory. Agric. water management. 42:1-27. https://doi.org/10.1016/S0378-3774(99)00025-6
  3. Blass, S. 1971. rip irrigation. In: Drip (trickle) and automated irrigation in Israel. Water Commissioners Office, Ministry of Agriculture, Tel Aviv, Israel. 1: 10-28.
  4. Bucks, D.A., L.J. Erie, O.F. French, F.S. Nakayama, and W.D. Pew. 1981. Subsurface trickle irrigation management with multiple cropping. Trans ASAE. 24:1482-1489. https://doi.org/10.13031/2013.34478
  5. Camp, C.R. 1998. Subsurface drip irrigation: a review. Trans. ASAE. 41(5): 1353-1367. https://doi.org/10.13031/2013.17309
  6. Camp C.R., P.J. Bauer, and P.G. Hunt. 1997. Subsurface drip irrigation lateral spacing and management for cotton in the southeastern coastal plain. Trans. ASAE. 40(4):993-999. https://doi.org/10.13031/2013.21351
  7. Dogan, E., H. Kirnak, K. Berekatoglu, L. Bilgel, and A. Surucu. 2008. Water stress imposed on muskmelon (Cucumis Melo L.) with subsurface and surface drip irrigation systems under semi-arid climatic conditions. Irrig. Sci. 26:131-138. https://doi.org/10.1007/s00271-007-0079-7
  8. Enciso, J., J. Jifon, and B. Wiedenfeld. Subsurface drip irrigation of onions: Effects of drip tape emitter spacing on yield and qualty. Agric. Water Manage. 92:126-130.
  9. Gericke, S. and B. Kurmies. 1952. Die kolorimetrische phosphorsaurebestimmung mit ammonium-vandat-molybdat und ihre anwendung bei der pflanzenanalyse. Z. Pflanzenernahrung, Dungung und Bodenkunde. 59, 235-247.
  10. Hanson, B.R., L.J. Schwankl, and K.F. Schulbach. 1997. A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water. Agric. Water Manage. 33:139-157. https://doi.org/10.1016/S0378-3774(96)01289-9
  11. IPET. 2012. Research and development trends about agricultural utilization of seawater against the era of water shortages. p. 1-10. Korea Institute of Planning and Evalution for Technology in Food, Agriculture, Forestry and Fishers. Seoul, Korea.
  12. Kong, Q., G. Li, Y. Wang, and H. Huo. 2012. Bell pepper response to surface and subsurface drip irrigation under different fertigation levels. Irrig. Sci. 30: 233-245. https://doi.org/10.1007/s00271-011-0278-0
  13. Kwon, O.S., T.H. Lee, and J.H. Heo. 2009. Valuation of irrigation water: A chance-constrained programming approach. Journal of Korea Water Resources Association. 42(4):281-295. https://doi.org/10.3741/JKWRA.2009.42.4.281
  14. Lamn, F.R. and T.P. Trooien. 2003. Subsurface drip irrigation for corn productivity: a review of 10 years of research in Kansas. Irrig. Sci. 22:195-200. https://doi.org/10.1007/s00271-003-0085-3
  15. Machado, R.M.A., M.R.G. Oliveira, and C.A.M. Portas. 2003. Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant and soil. 255:333-341. https://doi.org/10.1023/A:1026191326168
  16. Martinez Hernandez, J.J., B. Bar-Yosef, and U. Kafkafi. 1991. Effect of surface and subsurface drip fertigation on sweet corn rooting, uptake, dry matter production and yield. Irrig. Sci. 1991. 12:153-159.
  17. MIFAFF. 2011. Greenhouse status and production performance of vegetables in 2010. p. 59-73. Ministry for Food, Agriculture, Forestry and Fisheries. Seoul, Korea.
  18. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon and organic matter. p. 961-1010. In D.L. Sparks (ed) Methods of soil analysis. Part 3. SSSA Book Series No5. SSSA and ASA. Madison, WI.
  19. NIAST. 2000. Method of soil and plant analysis, National Institute of Agricultural Science and Technology. Rural Development Administration, Suwon, Korea.
  20. Oliveira, M.R.G., A.M. Calado, and C.A.M. Portas. 1996. Tomato root distribution under drip irrigation. J. Am. Soc. Hort. Sci. 121(4):644-648.
  21. Phene, C.J., K.R. Davis, R.B. Hutmacher, B. Bar-Yosef, D.W. Meek, and J. Misaki. 1991. Effect of high frequency surface and surface drip irrigation on root distribution of sweet corn. Irrig. Sci. 12:135-140.
  22. Phene, C.J., K.R. Davis, R.B. Hutmacher, and R.L. McCormick. 1987. Advnatages of subsurface drip irrigation for processing tomatoes. Acta Horticulture. 200: 101-113.
  23. Park, J.M., T.J. Lim, and S.E. Lee. 2012. Effect of subsurface drip pipes spacing on the yield of lettuce, irrigation efficiency, and soil chemical properties in greenhouse cultivation. Korean J. Soil Sci. Fert. 45:683-589. https://doi.org/10.7745/KJSSF.2012.45.5.683
  24. Zhuge, Y.P., X.D. Zhang, Y.L. Zhang, L.I. Jun, L.J. Yang, Y. Huang, and M.D. Liu. 2004. Tomato root response to subsurface drip irrigation. Pedosphere. 14: 205-212.
  25. Zotarelli, L., M.D. Dukes, J.M. Scholberg, T. Hanselman, K.L. Femminella, and R. Munoz-Carpena. 2008. Nitrogen and water use efficiency of zucchini squash for a plastic mulch bed system on a sandy soil. Sci. Hortic. 116:8-16. https://doi.org/10.1016/j.scienta.2007.10.029