• Title/Summary/Keyword: Riser design

Search Result 90, Processing Time 0.024 seconds

Fully coupled multi-hull/mooring/riser/hawser time domain simulation of TLP-TAD system with MR damper

  • Muhammad Zaid Zainuddin;Moo-Hyun Kim;Chungkuk Jin;Shankar Bhat
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.401-421
    • /
    • 2023
  • Reducing hawser line tensions and dynamic responses to a certain level is of paramount importance as the hawser lines provide important structural linkage between 2 body TLP-TAD system. The objective of this paper is to demonstrate how MR Damper can be utilized to achieve this. Hydrodynamic coefficients and wave forces for two bodies including second-order effects are obtained by 3D diffraction/radiation panel program by potential theory. Then, multi-hull-riser-mooring-hawser fully-coupled time-domain dynamic simulation program is applied to solve the complex two-body system's dynamics with the Magneto-Rheological (MR) Damper modeled on one end of hawser. Since the damping level of MR Damper can be changed by inputting different electric currents, various simulations are conducted for various electric currents. The results show the reductions in maximum hawser tensions with MR Damper even for passive control cases. The results also show that the hawser tensions and MR Damper strokes are affected not only by input electric currents but also by initial mooring design. Further optimization of hawser design with MR Damper can be done by active MR-Damper control with changing electric currents, which is the subject of the next study.

Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves

  • Kim, D.K.;Choi, H.S.;Shin, C.S.;Liew, M.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.881-896
    • /
    • 2015
  • In this study, a method for fatigue performance estimation of deepwater steel catenary riser (SCR) under short-term vortex-induced vibration was investigated for selected S-N curves. General tendency between S-N curve capacity and fatigue performance was analysed. SCRs are generally used to transport produced oil and gas or to export separated oil and gas, and are exposed to various environmental loads in terms of current, wave, wind and others. Current is closely related with VIV and it affects fatigue life of riser structures significantly. In this regards, the process of appropriate S-N curve selection was performed in the initial design stage based on the scale of fabrication-related initial imperfections such as welding, hot spot, crack, stress concentration factor, and others. To draw the general tendency, the effects of stress concentration factor (SCF), S-N curve type, current profile, and three different sizes of SCRs were considered, and the relationship between S-N curve capacity and short-term VIV fatigue performance of SCR was derived. In case of S-N curve selection, DNV (2012) guideline was adopted and four different current profiles of the Gulf of Mexico (normal condition and Hurricane condition) and Brazil (Amazon basin and Campos basin) were considered. The obtained results will be useful to select the S-N curve for deepwater SCRs and also to understand the relationship between S-N curve capacity and short-term VIV fatigue performance of deepwater SCRs.

Turret location impact on global performance of a thruster-assisted turret-moored FPSO

  • Kim, S.W.;Kim, M.H.;Kang, H.Y.
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.265-287
    • /
    • 2016
  • The change of the global performance of a turret-moored FPSO (Floating Production Storage Offloading) with DP (Dynamic Positioning) control is simulated, analyzed, and compared for two different internal turret location cases; bow and midship. Both collinear and non-collinear 100-yr GOM (Gulf of Mexico) storm environments and three cases (mooring-only, with DP position control, with DP position+heading control) are considered. The horizontal trajectory, 6DOF (degree of freedom) motions, fairlead mooring and riser tension, and fuel consumptions are compared. The PID (Proportional-Integral-Derivative) controller based on LQR (linear quadratic regulator) theory and the thrust-allocation algorithm which is based on the penalty optimization theory are implemented in the fully-coupled time-domain hull-mooring-riser-DP simulation program. Both in collinear and non-collinear 100-yr WWC (wind-wave-current) environments, the advantage of mid-ship turret is demonstrated by the significant reduction in heave at the turret location due to the minimal coupling with pitch mode, which is beneficial to mooring and riser design. However, in the non-collinear WWC environment, the mid-turret case exhibits unfavorable weathervaning characteristics, which can be reduced by employing DP position and heading controls as demonstrated in the present case studies. The present study also reveals the plausible cause of the failure of mid-turret Gryphon Alpha FPSO in milder environment than its survival condition.

A Study on the Feeding Distance of Aluminium Alloy Casting (알루미늄합금(合金) 주물(鑄物)의 급탕(給湯)거리에 관(關)한 연구(硏究))

  • Jung, Woon-Jae;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.3 no.1
    • /
    • pp.13-21
    • /
    • 1983
  • In order to determine the feeding distance of aluminiun alloys (Alsi7Mg and AlCu4Ti) bar castings in the sand mold, the distance of the sound castings has been observed by radiograph for various risers, melt treatment, and casting design. Variation of porosity and hardness with the distance from the riser were also measured in order to determine the casting soundness. The results obained were as follows; 1) The modulus of riser should be 1.4 times of the casting`s 2) The maximum distance which can be made sound is greatly dependent on chemical composition and ingate location, and follows the rules given by the formula; a) When the melt flows into the casting first, and the riser afterward, D = 37.7 ${\sqrt{T}}$ for AlSi7Mg D = 31.2 ${\sqrt{T}}$ for pure aluminium D ${\ge}$ 54.8 ${\sqrt{T}}$ for AlCu4Ti Where T = casting thickness in mm Of this maximum distance, $aa{\sqrt{T}}$ for AlSi7Mg and 7.5 ${\sqrt{T}}$ for pure aluminium is made sound by the chilling effect of the casting edge. b) When the melt flows into the casting passing through the riser, $30{\times}30{\times}600mm$ bars can be made sound in all cases 3) Percentage of porosity is higer in AlCu4Ti than AlSi7Mg. And it is increased gradually by moving closer to the riser in case of $30{\times}30{\times}600mm$ bars, but for the $30{\times}30{\times}600mm$ bars it is increased gradually by moving closer to the center of bars. 4) Hardness variation is similar to the tendency of porosity. And it decreased gradually with approaching to the center in case of $30{\times}30{\times}600mm$ bars.

  • PDF

Analysis of Particles Motion in Vertical Rayleigh Flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.447-456
    • /
    • 2007
  • Suspended particles behavior when they go through a vertical riser with heat transfer is of significant concern to system designers and operators in pneumatic transport, various processes such as in chemical, pharmaceutical and food industries. When it comes with the energy system, that knowledge is critical to the reliable design practices of related equipment as heat exchangers, especially in the phase of system scale-up. Without haying a good understanding of the related physics, many scale-up practices based on their pilot plant experience suffer from unexpected behaviors and problems of unstable fluidization typically associated with excessive pressure drop, pressure fluctuation and even unsuccessful particle circulation. In the present study, we try to explain the observed phenomena with related physics, which may help understanding of our unanswered experiences and to provide the designers with more reliable resources for their work. We selected hot exhaust gas with solid particle that goes through a heat exchanger riser as our model to be considered. The effect of temperature change on the gas velocity, thermodynamic properties, and eventually on the particles motion behavior is reviewed along with some heat transfer analyses. The present study presents an optimal riser length at full scale under given conditions, and also defines the theoretical limiting length of the riser. The field data from the numerical analysis was validated against our experimental results.

Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints (그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구)

  • Kim, Sung-Wan;Yun, Da-Woon;Kim, Jae-Bong;Jeon, Bub-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, a steel frame that realized the second floor of a structure was fabricated in referring to NFPA 13. In addition, a riser pipe system with groove joints was installed, and a seismic simulation test was performed using static cyclic loading. Cyclic loading tests on the maximum allowable side sway of seismic design standards for buildings in Korea were conducted using actuators to analyze the seismic behavior of the riser pipe system and major piping elements due to the deformation of the steel frame structure or the displacement-dominant behavior caused by the relative displacement between the structural members in the event of a seismic load. Moreover, the deformation angle of the riser pipe system was measured using an image measurement system because it is difficult to measure using the conventional sensors.

Riser Design Approach for Particle-Circulation-Type Heat Exchangers (입자 순환식 열교환기의 상승관 설계방법)

  • Jun Yong-Du
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.311-312
    • /
    • 2002
  • In this paper a systematic design approach to determine the optimum size (height) of circulating fluidized bed heat exchanger for exhaust gas heat recovery is prososed. Unlike the convensional heat exchangers where the length of the heat exchanger section is not very much emphasized, the vertical length of heat exchanger tube in the case of fluidized bed heat exchangers is important because this length determines the time interval during which particles reside and transfer heat in the heat exchanger section. For particles initial conditions are nearly stationary, accelerating particles motion should be considered rather than simply assuming fully developed condition. A way to estimate optimum tube length at different fluid velocity and particle sizes is suggested based on the required conditioning time for heat transfer from the flue gas to solid particles.

  • PDF