• Title/Summary/Keyword: Ripple voltage

Search Result 738, Processing Time 0.028 seconds

Photovoltaic Multi-string PCS with a Grid-connection (계통연계형 멀티스트링 태양광 발전 시스템)

  • Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.255-258
    • /
    • 2007
  • In this paper, a PV multi-string PCS with a grid-connection is proposed. An improved MPPT algorithm for the PV multi-string PCS is suggested. Each PV string has its own MPP tracker and the proposed MPPT algorithm prevents LMPP tracking due to power ripple. In the PV PCS with single-phase inverter has a large current ripple at twice the grid frequency. The current ripple reduction algorithm without external component is suggested. Also, this paper proposes a simple control method to achieve sharing of the PV string voltage and current among the interleaved parallel boost converters. All algorithms and controllers are implemented on a single-chip microcontroller. Experimental results obtained on a 3kW prototype show high performance of the proposed PV multi-string PCS.

  • PDF

Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives (델타 결선형 저인덕턴스 BLDC 전동기의 토크 리플 저감을 위한 전류 보상 기법)

  • Park, Do-Hyeon;Lee, Dong-Choon;Lee, Hyong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.449-456
    • /
    • 2017
  • This study proposes a method for compensating for the commutation torque ripple of delta-connected brushless DC motors with low inductance based on a current predictions. At the commutation instant, a phase current at the next sampling period is predicted and compared with the reference phase current to determine whether torque ripples will occur or not. If the predicted current cannot reach the reference phase current, the reference current is modified and the relevant voltage reference is produced to reduce the torque ripple. The validity of the proposed method has been verified by simulation and experimental results. The commutation torque ripple has been decreased by 17.7% at 1,000 rpm and 80% load conditions.

Non-isolated Bidirectional Soft-switching SEPIC/ZETA Converter with Reduced Ripple Currents

  • Song, Min-Sup;Son, Young-Dong;Lee, Kwang-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.649-660
    • /
    • 2014
  • A novel non-isolated bidirectional soft-switching SEPIC/ZETA converter with reduced ripple currents is proposed and characterized in this study. Two auxiliary switches and an inductor are added to the original bidirectional SEPIC/ZETA components to form a new direct power delivery path between input and output. The proposed converter can be operated in the forward SEPIC and reverse ZETA modes with reduced ripple currents and increased voltage gains attributed to the optimized selection of duty ratios. All switches in the proposed converter can be operated at zero-current-switching turn-on and/or turn-off through soft current commutation. Therefore, the switching and conduction losses of the proposed converter are considerably reduced compared with those of conventional bidirectional SEPIC/ZETA converters. The operation principles and characteristics of the proposed converter are analyzed in detail and verified by the simulation and experimental results.

An Adaptive Prefiltering Method for Reduction of DC-link ripple in Cascaded NPC/H-bridge System (Cascaded NPC/H-bridge 시스템의 DC-link 리플 저감을 위한 적응 선필터링 기법)

  • Lee, Hoon;Kang, Jin-Wook;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.445-446
    • /
    • 2017
  • In this paper, adaptive prefiltering method is proposed for reduction of dc-link ripple in cascaded NPC/H-bridge system. Under non-linear load such as electric machine or harmonically distorted conditions, dc-link capacitor voltage with harmonics is inevitable result. In terms of reducing dc-link ripple, prefiltering method combined low pass filter with multiple second order generalized integrator is proposed. Proposed prefiltering method effectively reduces harmonics of dc-link ripple and improves characteristic of THD, simulated by using MATLAB R2014a and PSIM 9.1.4.

  • PDF

Torque Ripple Reduction Method in a Sensorless Drive for BLDC Motor (브러시리스 직류전동기용 센서리스 드라이브의 토크 맥동 저감 방법)

  • Lee, Kwang-Woon;Kim, Dae-Kyong;Kim, Tae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1087-1089
    • /
    • 2003
  • This paper presents a method to reduce commutation torque ripple in a sensorless brushless DC motor drive without current sensors. To compensate the commutation torque ripple completely, the duration of commutation must be known. The proposed method measures the duration of commutation from terminal voltage waveforms, calculates a PWM duty ratio to suppress the commutation torque ripple from the output of speed controller, and applies the calculated PWM duty ratio only during the commutation. Experimental results show that vibrations are considerably reduced when the proposed method is applied to the sensorless brushless DC moter drive for air-conditioner compressor.

  • PDF

Torque Ripple Reduction Scheme of Single-Phase SRM with High Power Factor (고역률형 단상 SRM의 토크리플 저감방식)

  • Lee, Zhen-Guo;Liang, Jianing;An, Young-Ju;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.122-125
    • /
    • 2005
  • A novel torque ripple reduction scheme of single-phase SRM with high power factor is presented. The proposed SRM drive has one additional active switches in the conventional asymmetric inverter. In order to get a higher power factor, the source current is controlled sinusoidal, And additional excitation current is added from charge capacitor due to torque ripple reduction. The switching period of source and charged voltage is controlled properly to get unity power factor and torque ripple reduction. The characteristics and validity of the proposed scheme is discussed with some simulation results.

  • PDF

Torque Ripple Reduction in Synchronous Motor Systems Driven by an Inverter (인버터로 구동되는 동기전동기 시스템에서의 토크리플 저감)

  • Won, Euy-Youn;Lee, Dong-Keun;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.247-250
    • /
    • 1995
  • This paper proposes a new method to reduce the torque ripple in vector controlled inverter fed synchronous motor systems. In three phase voltage source inverter systems, all the three line currents are generally not measured and the currents of two lines are measured through two sensors and two A/D converters. The measured currents may contain some error due to the non-ideality of the current sensors and A/D converters, and the error coefficient of two line currents are not same. As a result, the developed torque contains the torque ripple. The proposed method can eliminate the torque ripple by setting the error coefficient to same value. To verify the proposed method, digital simulations are carried out.

  • PDF

The Notch Filter Design for Mitigation Current Ripple of Fuel cell-PCS (연료전지용 PCS의 출력 전류 리플 개선을 위한 노치 필터 설계)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • As a fuel cell converts the chemical energy of the fuel cell into electrical energy by electrochemical reaction, the fuel cell system is uniquely integrated technique including fuel processor, fuel cell stack, power conditioning system. The residential fuel cell-PCS(Power Conditioning System) needs to convert efficiently the DC current produced by the fuel cell into AC current using single-phase DC-AC inverter. A single-phase DC-AC inverter has naturally low frequency ripple which is twice frequency of the output current. This low frequency(120Hz) ripple reduces the efficiency of the fuel cell. This paper presents notch filter with IP voltage controller to reject specific 120Hz current ripple in single-phase inverter. The notch filter is designed that suppress just only specific frequency component and no phase delay. Finally, the proposed notch filter design method has been verified with computer simulation and experimentation.

Input Current Ripple Improvement on Interleaved Boost Power Factor Corrector Operating in Discontinuous Current Mode (불연속 전류모드로 동작하는 Interleaved 승압형 역률보상 컨버터의 입력전류 리플개선)

  • 허태원;박지호;노태균;김동완;박한석;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.116-123
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a pre-regulator in switched mode power supply. The pre-regulator plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).