• Title/Summary/Keyword: Ripple torque

Search Result 656, Processing Time 0.037 seconds

Torque Ripple Reduction Method of SRM Drives Using Neural Network Technique (신경회로망기법을 이용한 SRM 드라이브의 토오크리플 저감방안)

  • Lee, Seong-Du;Jung, Tae-Uk;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.227-229
    • /
    • 1997
  • The torque of SRM is developed by phase currents and inductance variation. The inductance of torque generation region is nonlinearly varied according to phase current. By this nonlinear characteristics, torque ripple can be generated on the condition of constant current. Otherwise, phase current should be controlled instantaneously in accordance with inductance to reduce torque ripple. In this paper, the control system with neural network that can reduce torque ripple is suggested. In this control system, instantaneous inductance and optimal current waveform for smallest torque ripple is obtained by neural network. And this required optimal current waveform is regulated by voltage control.

  • PDF

A Study of Torque Ripple Minimization and Maximum Torque Control for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 IPMSM의 토크리플 저감과 최대토크 제어에 관한 연구)

  • Hong In-Pyo;Lee Sang-Hun;Choi Cheol;Kim Jang-Mok;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.142-145
    • /
    • 2001
  • In this paper the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor) is analyzed. If flux distributions in the motor are not sinusoidal, a sinusoidal current produces important torque ripple. Torque ripple causes vibration and noise of motors. The optimized current waveforms for ripple free is able to be obtained by analysis of Back-EMF and torque equation. The method to find the optimal current is based on numerical predetermination. In this paper proposes current waveform which can eliminate the torque ripple, and the validity is verified through the simulation.

  • PDF

Extending Switching Frequency for Torque Ripple Reduction Utilizing a Constant Frequency Torque Controller in DTC of Induction Motors

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohd;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Direct torque control(DTC) of induction machines is known to offer fast instantaneous torque and flux control with a simple control structure. However, this scheme has two major disadvantageous, namely, a variable inverter switching frequency and a high torque ripple. These problems occur due to the use of hysteresis comparators in conventional DTC schemes, particularly in controlling the output torque. This paper reviews the utilization of constant frequency torque controllers (CFTC) in DTC to solve these problems while retaining the simple control structure of DTC. Some extensions of the work in utilizing a CFTC will be carried out in this paper which can further reduce the torque ripple. This is particularly useful for a system which has a limited/low sampling frequency. The feasibility of a CFTC with an extended carrier frequency in minimizing the torque ripple is verified through experimental results.

Torque ripple reduction in DTC of induction motor driven by 3-level inverter (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 토크리플 저감법)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choy, Ick;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.620-631
    • /
    • 2000
  • A torque ripple reduction technique of direct torque control(DTC) for high power induction motors driven by 3-level inverters with the inverter switching frequency limited around 0.5-1.0kHz level is presented. It is noted that conventional DTC algorithms to reduce torque ripple are devised for applications with relatively high switching frequency above 2-3kHz. Such conventional algorithms can not accomplish satisfactory torque ripple reduction for 3-level inverter systems with lower switching frequency. A new DTC algorithm, especially for low switching frequency inverter system, illustrates relatively reduced torque ripple characteristics all over the operating speed region. Simulation and experimental results show the effectiveness of the proposed control algorithm.

  • PDF

Novel Periodic Torque Ripple Compensation Scheme in Vector Controlled AC Motor Drives (벡터제어 교류전동기 구동에서의 새로운 주기적 토오크 리플 보상기법)

  • Choe, Jong-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.530-536
    • /
    • 2002
  • In this paper, a new torque ripple compensator is proposed. The proposed torque ripple compensator utilizes only speed information, so it can be easily applied to an existing motor drive system by including the algorithm. The stability analysis is discussed. From the discussion, the proper gain selection method, which makes the compensator stable and fast convergent, is also presented. The experimental results are presented and show the torque ripple reduction capability of the proposed scheme.

PIR Speed Control Method of AC Motors Considering Time Delay in Speed Information

  • Lee, Jung-Ho;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2289-2297
    • /
    • 2017
  • Applying a periodic load torque to an AC motor generates a ripple, which is synchronized to the frequency of the periodic load torque, at the speed of the motor. Consequently, numerous studies have focused on reducing the speed ripple caused by the load torque. However, it is difficult to reduce the speed ripple when there is a time delay in acquiring speed information, such as that from a sensorless control. Therefore, we propose a speed control method for reducing speed ripples caused by a periodic load torque when there is a time delay in acquiring the speed information. The proposed method is verified by conducting simulations using the Simulink program from MATLAB, and by applying the method to an actual motor in which speed ripples occur due to a periodic load torque that is synchronized with the speed of the motor.

Torque ripple reduction in DTC of induction motor driven by 3-level inverter with low switching frequency (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 낮은 스위칭 주파수에서의 토크 리플 저감법)

  • 송중호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.203-206
    • /
    • 2000
  • This paper presents a torque ripple reduction technique of direct torque control(DTC) for high power induction motors driven by 3-level inverters with the inverter switching frequency limited around 0.5-1kHz level. It is noted that conventional DTC algorithms to reduce torque ripple are devised for applications with relatively high switching frequency above 2-3kHz. A new DTC algorithms especially for low switching frequency inverter system illustrates relatively reduced torque ripple are devised for applications with relatively high switching frequency above 2-3kHz. Anew DTC algorithm especially for low switching frequency inverter system illustrates relatively reduced torque ripple characteristics Simulation and experimental results show the effectiveness of the proposed control algorithm

  • PDF

A Study for Torque Ripple Reduction with PWM Pattern on Brushless DC Motor During Commutation (BLDC 전동기에서 PWM 방식에 따른 토크리플 저감에 관한 연구)

  • Kim, Sang-Hoon;Kwon, Kyeong-Jun
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.109-117
    • /
    • 2004
  • This paper presents a current control strategy to reduce torque ripple of Brushless DC Motor in commutation period with PWM pattern. The torque ripple is mainly caused by the inequality in the rate of change between rising current and decaying one during commutation. And also it is influenced by the shape of real back EMF. Therefore, in the proposed control strategy, considering real back EMF a compensation voltage is generated to equalize the rate of change in these commutating currents. And then, by providing the compensation voltage in commutation period with PWM pattern, the torque ripple can be reduced. The simulation and experimental results verify that the proposed method can reduce the torque and the current ripples significantly.

  • PDF

Minimization of Torque Ripple for an IPMSM with a Notched Rotor Using the Particle Swarm Optimization Method

  • Shin, Pan Seok;Kim, Ho Youn;Kim, Yong Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1577-1581
    • /
    • 2014
  • This paper presents a method to minimize torque ripple of a V-type IPMSM using the PSO (Particle Swarm Optimization) method with FEM. The proposed algorithm includes one objective function and three design variables for a notch on the surface of a rotor. The simulation model of the V-type IPMSM has 3-phases, 8-poles and 48 slots with 2 notches on the one-pole rotor surface. The arc-angle, length and width of the notch are optimized to minimize the torque ripple of the motor. The cogging torque of the model is reduced by 55.6% and the torque ripple is decreased by 15.5 %. Also, the efficiency of the motor is increased by 15.5 %.

Shape Design for minimization Torque Ripple of Switched Reluctanc Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 형상 설계)

  • Kim, H.S.;Kwon, B.I.;Lee, J.W.;Kim, B.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.580-582
    • /
    • 2002
  • A major problems of Switched Reluctance Motor(SRM) is torque ripple which causes undesirable acoustic noise and vibration. To reduce the torque ripple two different approaches are used. One is to modify a motor geometry, the other is to manipulate motor current to improve performance. This paper presents modifications of the rotor pole shape which reduces the torque ripple.

  • PDF