• Title/Summary/Keyword: Ripening Time

Search Result 274, Processing Time 0.029 seconds

A Study of Bi-Axial Stretching Process for the PTFE Membrane(I) (이축연신 PTFE 막 제조 공정에 관한 연구(I))

  • Shin, Hong-Chul;Kim, Sung-Chul;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.42 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • A few of polytetrafluoroethylene(PTFE) membranes and PTFE fine powders were analyzed to chooce an optimum resin. The bi-axial stretching process was developed to set up the foundation of the preparation process and control the pore size and porosity of PTFE membrane. The pretreatment of PTFE fine powder used in the preparation process for PTFE was needed. The mixing of additives, the ripening of mixture, paste extrusion process of ripening powder, calendering process and the bi-axial process were conducted for controlling pore size, porosity and thckness of membrane. The aftertreatment which strengthened the mechanical properties was necessary. The control of pore size and porosity of the membrane were determined. The ratio of PTFE fine powder and additives at the paste extrusion process, the ripening time, the ripening temperature and the parameters of temperature and pressure at the paste extrusion process were optimized.

Effects of Ethrel on Tobacco-Leaf Maturity -Influences by Different Levels of the Chemical, Soil Nitrogen and Time of the Chemical Application- (Ethrel의 농도, 처리시기 및 질소농도별 시비의 잎담배 성숙에 미치는 영향)

  • 정병화
    • Journal of Plant Biology
    • /
    • v.17 no.1
    • /
    • pp.15-21
    • /
    • 1974
  • The most commonly grown economical and flue-cured tobacco cultivar Yellow Special A was used in pot-culture tests in order to study Ethrel (2-chloroethyl phosponic acid) effects on accelerating maturity of tobacco leaves in relation to the most adequate level of the chemical useful for field growing, nitrogen level in soil for the most pronounced response, and the most suitable spray period during the growth stages of pre-, post- and topping periods. The following conclusions, thus, were obtained from the present studies; 1. 500ppm Ethrel spray was reconfirmed to be adequate in the practical applications, although the extent of yellow-ripening of tobacco leaves was increased as the Ethrel level increased. The highest leevel treated resulted in causing chemically damaged lesions on leaves and early defoliation. 2. Ethrel-treated leaves showed deeper yellowish tinge to them than those without treatment, while different levels of the chemcial had less influence on the tinge. 3. An adequate level of nitrogen supply to plants favored the Ethrel response, whereas either very low or high level of nitrogen in the soil lowered the chemical effect on accelerating the yellow-ripening. When carbohydrates versus total nitrogen ratio became relatively high, the condition brought out some outstanding Ethrel effects. 4. Chlorophyll level of leaves increased as soil applications of nitrogen level increased, and that also increased carotenoid level of the tobacco leaves. Ethrel-treated leaves showed deeper orange tinge than those without treatment, while the highest level of nitrogen application showed the deepest orange tinge to tobacco leaves. 5. Pre-topping treatment (12 days before topping and flowering) resulted in almost no Ethrel response, and that treatment right on the day of topping, showed response of yellow-leaf ripening at nearly bottom-half leaves of a tobacco plant. The post-topping treatment (12 days after topping) made plants showing full response of Ethrel from bottom to the top leaves of tobacco plant in accelerating the leaf maturity. 6. The extent of Ethrel responses on accelerating yellow-ripening of tobacco leaves was discussed for the modifying influences brought about by certain environmental factors. Discussions were also made about the possible practical applications (particularly for pre-rice planting) and quality difference that may be caused by such growth environments.

  • PDF

Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum

  • Lopez-Gonzalez, Rocio Crystabel;Juarez-Campusano, Yara Suhan;Rodriguez-Chavez, Jose Luis;Delgado-Lamas, Guillermo;Medrano, Sofia Maria Arvizu;Martinez-Peniche, Ramon Alvar;Pacheco-Aguilar, Juan Ramiro
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.24-35
    • /
    • 2021
  • Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/㎠). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce anti-fungal lipopeptides from iturin and fengycin families.

Effects of Cultural Practices on Ripening Characteristics of Japonica and Tongil Type in Rice (Oryza sativa L.) (수도재배법의 차이가 Japonica 및 Tongil 형 품종의 등숙특성에 미치는 영향)

  • 권규칠;박성규
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.3
    • /
    • pp.298-308
    • /
    • 1988
  • This study was carried out to get infirmation for the breeding varieties and developing the cultural methods with representative 32 cultivars which were diffused from 1900 to 1982 and two cultural methods which were old one i.e., low dressing and late planting and modern one i.e., medium dressing and early planting. Duration of transplanting between cultural practices were 15 days but the duration of heading date were 5days. Panicle projecting duration was 5-10 days in all cultivars, especially, it is 5 days in early maturing varieties, 6-7 days in medium maturing varieties and 7-10 days in late maturing varieties. Periods from transplanting date to effective ripening date were 99.8 days in low dressing and late planting method, 106.2 days in modern one but the periods from heading date to effective ripening date were 31.4 days in low dressing and late planting method, 30.2 days in modern one. Ripening speed was very active from 5 to 10 days after heading and the daily increase of 1000 grain weight was from 847.8mg to 1130mg in that time and it slightly increased from 5 to 35 days after heading in Japonica varieties but increased after heading and suddenly decreased at 30 days after heading in Indica/Japonica varieties. Meteorological factors (temperature and amount of solar radiation) were positively correlated with the ripening speed but negatively correlated with the period of physiological and effentive ripening.

  • PDF

Quantitative Analysis of Milk-Derived microRNAs and Microbiota during the Manufacturing and Ripening of Soft Cheese

  • Oh, Sangnam;Park, Mi-Ri;Ryu, Sangdon;Maburutse, Brighton E.;Kim, Ji-Uk;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1566-1575
    • /
    • 2017
  • MicroRNAs (miRNAs) are abundant in bovine milk and milk derived from other livestock, and they have functional roles in infants and in the secretion process of mammary glands. However, few studies have evaluated miRNAs in dairy processes, such as during cheese making and ripening. Thus, we investigated the characteristics of milk-derived miRNAs during the manufacturing and ripening of Camembert cheese as well as the microbiota present using the quantitative reverse transcription polymer chain reaction (RT-qPCR) and 16S rRNA pyrosequencing, respectively. Pyrosequencing showed that the cheese microbiota changed dramatically during cheese processing, including during the pasteurization, starter culture, and ripening stages. Our results indicated that the RNA contents per $200mg/200{\mu}l$ of the sample increased significantly during cheese-making and ripening. The inner cheese fractions had higher RNA contents than the surfaces after 12 and 22 days of ripening in a time-dependent manner (21.9 and 13.2 times higher in the inner and surface fractions than raw milk, respectively). We performed a comparative analysis of the miRNAs in each fraction by RT-qPCR. Large amounts of miRNAs (miR-93, miR-106a, miR-130, miR-155, miR-181a, and miR-223) correlated with immune responses and mammary glands were present in aged cheese, with the exception of miR-223, which was not present on the surface. Considerable amounts of miRNAs were also detected in whey, which is usually disposed of during the cheese-making process. Unexpectedly, there were no significant correlations between immune-related miRNAs and the microbial populations during cheese processing. Taken together, these results show that various functional miRNAs are present in cheese during its manufacture and that they are dramatically increased in amount in ripened Camembert cheese, with differences according to depth.

Effects of Temperature on Grain Filling Properties of Rice Flour Varieties during the Ripening Stage (등숙기 온도에 따른 쌀가루 가공용 벼의 등숙특성 변이 구명)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun;Choi, MyoungGoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The processing of rice is one of the measures to expand the scope of rice use in response to the decrease in rice consumption. Since the main ingredient of rice processing is rice flour, "rice flour varieties" have been bred with the aim to improve the productivity and quality of rice flour. In order to study the variation in the ripening characteristics of rice flour varieties with respect to temperature, the average temperature after heading date was set at 28℃ (33/23℃), 22℃ (27/17℃), and 18℃ (23/13℃) inside the phytotron. We used Saenuri as non-glutinous rice variety, Seolgaeng as soft-type rice flour variety, and Baromi2 as powdered rice flour variety. At high temperatures (28℃), the grain weight of Baromi2 decreased by 21%. Its starch content also decreased by more than 10%, which was significantly lower than that of Saenuri and Seolgaeng. At low temperatures (18℃), the grain weight and starch content slightly increased or were similar in all varieties. An analysis of changes in the grain weight due to effective accumulated temperature through the sigmoid function showed that the velocity of grain-filling slowed significantly when Baromi2 was exposed to low temperature during the ripening stage compared to the other varieties. Therefore, the transplanting time of Baromi2 should be delayed to avoid high temperatures during the ripening stage. However, because the ripening period is not properly secured under low temperature conditions, grain filling may not be sufficient.

Microstructural Evolution of Electromagnetically Stirred Al alloy Billet During Isothermal Reheating at the Solid-liquid State (전자기 교반한 알루미늄합금 빌렛의 재가열시 고액공존구역에서의 조직변화)

  • Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.129-135
    • /
    • 2008
  • The reheating stage of electromagnetically stirred Al billet is a critical factor in the thixoforming process. When reheated to the solid-liquid state, the microstructure evolves to a more globular and more homogeneous structure by a coarsening mechanism, the kinetics depending on the initial microstructure. Microstructural evolution has been characterized by conventional parameters (mean size of particle and shape factor) as a function of holding time in the solid-liquid state. The aim of this study is to report experimental results concerning microstructural evolution in the solid-liquid state of electromagnetically stirred Al billet. The material was elaborated in the form of continuously cast bars solidified with electromagnetic stirring to degenerate the dendritic structure. The choice of the reheating conditions is determined by a dendritic ripening and coalescence mechanism, involving variations of both the shape and size of the particles. The reheating time has to be long enough to allow a minimum degree of spheroidizing, but has to be limited as much as possible in order to avoid excessive ripening. The optimum microstructure was obtained at the reheating temperature of near $584^{\circ}C$ and the holding time of 5 min. The only means of combining high productivity with good casting quality was to use feedstock billets whose microstructure showed rapid transformation characteristics.

Physicochemical Properties of Korean Citrus sudachi Fruit by Harvesting Time and Region (국내산 영귤의 산지 및 수확시기에 따른 성분특성)

  • Jeong, Seung-Weon;Lee, Kyung-Mee;Jeong, Jin-Woong;Lee, Young-Chul;Lee, Mie-Soon;Um, Seon-Seob
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1503-1510
    • /
    • 1999
  • This study was performed to investigate the physicochemical properties of Korean Citrus sudachi fruit which were harvested at different harvesting time(every 20 days from Sep. 3 to Nov. 8) and region(Seogwipo and Cheju city area). The average weight of Citrus sudachi fruit harvested from Seogwipo area was as twice as that of Cheju area at the same period. The moisture content in fruit peel increased by ripening of fruit, but that of fruit juice showed no difference. The content of reducing sugar in fruit peel and fruit juice increased 2 times from Sep. 3 to Nov. 8. The content of crude fiber decreased both in fruit peel and fruit juice as progression of ripening. Crude protein and ash contents decreased in fruit peel but revealed no differences in the fruit juice during the same period. pH decreased in fruit peel and juice with its ripening. The content of vitamin C decreased by ripening of fruit. The transmittance which is important quality factor in fruit juice increased from Sep. 20 to Oct. 13. The content of free sugar increased about 2 times in fruit peel from Sep. 3 to Nov. 8 and showed 4 times increase in fruit juice at the same period. In the composition ratio of mineral, Ca and K were abundant in the fruit peel, but only K was the most abundant mineral in fruit juice than any others.

  • PDF

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) During the Ripening and Fermentation-Part 2

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2008
  • The Chinese cabbage kimchi, baechoo-kimchi, is the most popular type of kimchi in Korea. This study was performed to investigate the changes of index microorganisms (aerobic bacteria, psychrotrophilic bacteria, coliforms, and Escherichia coli), lactic acid bacteria, pH, and acidity of kimchi during the long-term fermentation and ripening. A homemade-style traditional Korean baechoo-kimchi, was prepared from Chinese cabbage, red pepper, green onion, garlic, ginger, and salt-fermented anchovy sauce, and then incubated at $10^{\circ}C$ for 28 days. In the baechoo-kimchi, the number of aerobic bacteria increased with time. The number of psychrotrophilic bacteria maintained their numbers $(10^4CFU/g)$ in the kimchi during the fermentation. Coliforms and E. coli were not detected in the kimchi. The pH of kimchi decreased and the acidity of kimchi increased over time. Lactic acid bacteria, which are representative of fermentative microorganisms in the kimchi process showed rapid growth in the earlier stage of fermentation and increased steadily after 7 days. The counts of lactic acid bacteria were at a level of $10^4CFU/g$ early in the fermentation stage, reaching a level of $10^8CFU/g$ after 14 days, and at this point pH was 4.18 and acidity reached 0.63, indicating that the optimal state of kimchi fermentation. This study suggests that the lactic acid bacteria which were proliferated in kimchi during the ripening and fermentation could contribute to improving the taste and flavor of kimchi and inhibit the growth of pathogenic microorganisms that might exist in kimchi.

Flavor development in cheddar cheese (체다 치즈의 맛의 개발)

  • 정청송;유상훈
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.14 no.1
    • /
    • pp.59-77
    • /
    • 2003
  • This study was carried out to find a cholesterol removal rate, flavor development, and bitter amino acid productions in Cheddar cheese treated with -cyclodextrin ($\beta$-CD): l) Control (no homogenization, no $\beta$-CD), and 2) Milk treatment (1000 psi milk homogenization, 1 % $\beta$-CD). The cholesterol removal of the cheese were 79.3%. The production of short-chain free fatty acids (FF A) increased with a ripening time in both control and milk treated cheese. The releasing quantity of short-chain FFA was higher din milk treated cheese than control at 5 and 7 mo ripening. Not much difference was found in neutral volatile compounds production between samples. In bitter-tasted amino acids, milk treatment group produced much higher than control. In sensory analysis, texture score of control Cheddar cheese significantly increased, however, that in cholesterol-reduced cheese decreased dramatically with ripening time.

  • PDF