• Title/Summary/Keyword: Ring-opening

Search Result 328, Processing Time 0.031 seconds

Preparation of PNIPAM Hydrogel Containing Lipoic Acid (리포익산을 함유한 PNIPAM 하이드로젤의 제조)

  • Yoon, Hye-Ri;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • Poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been studied as an important drug delivery system due to its volume transition or temperature-responsive swelling properties, whose phase separation temperature is similar to the body temperature. However, because of hydrophilic PNIPAM, hydrophobic drugs are difficult to be uniformly loaded in the networks. Antioxidant alpha-lipoic acid (LA) can be prepared as a polymer(polylipoic acid, PLA) by ring opening polymerization, which is hardly developed as a material due to its low molecular weight and easy depolymerization. To overcome this limitation, a hydrophobic active ingredient, LA was reacted with NIPAM into stable hydrogels. Simple thermal radical reaction successfully resulted in a hydrogel (PNIPAM/PLA), which was confirmed by DSC, FTIR, and Raman spectroscopy. The PNIPAM/PLA showed temperature-responsive properties, and their volume swelling decreased with an increase in lipoic acid content. These hydrogels can carry hydrophobic drugs with PNIPAM and the hydrogels could be useful as final drug delivery systems having lipoic acid as an antioxidant.

The Fine Structure of the Sperm Ball and Sperm of Urechis unicinctus and Immunogold Localization of $\alpha-Tubulin$ (개불(Urechis unicinctus) Sperm Ball과 정자의 미세구조와 금 입자 면역 반응에 의한 $\alpha-Tubulin$의 분포)

  • Shin, Kil-Sang
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.193-205
    • /
    • 1998
  • The Urechis unicinctus sperm and spermatogenic cells prepared from the testis are investigated to identify $\alpha-tubulin$ of axoneme microtubules using mouse monoclonal $anti-\alpha-tubulin$ as the first Ab and Gold(10nm) conjugated goat anti-mouse IgG as the Ab marker. The Ag-Ab reaction analyzed excellently the localization of $\alpha-tubulin$ and the gold particles incorporated with the proximal and distal centrioles, manchette microtubules, and flagellum. The gold particles can be also observed in the spermatogenic cells while the cells are still in sperm ball which is composed of a somatic cell and spermatogenic cells. The sperm ball is the functional unit of sperm production in U unicinctus testis. The spermatids are developed from the spermatogenic cells in the sperm ball and released into the testis cavity through a cortical cytoplasmic opening. The spermatid architectures are similar with the mature sperm of the testis cavity in aspects of shape of discoid acrosome, degree of nuclear condensation and ring type of mitochondrion. However, the distal centriole connecting with the flagella can be observed from the mature sperm while the both proximal and distal centrioles reveal only in the spermatids. The proximal centriole is directly connected with nuclear outer membrane during the stage of nuclear condensation and oriented perpendicularly to the distal centriole whose axis coinciding with the longitudinal axis of the spermatozoon. There are indications that the distal centriole is intimately associated with the polymerization of the flagellum. The manchette microtubules appear during spermatid development but the mature sperm have round head and no conspicuous middle piece.

  • PDF

Preparation and Properties of Biodegradable Hydrogels from Poly(2-hydroxyethyl aspartamide) and HMDI (HMDI 가교 폴리아스팔트아미드 수화젤의 제조 및 특성)

  • Kim Jeong Hoon;Sim Sang Jun;Lee Dong Hyun;Kim Dukjoon;Lee Youngkwan;Kim Ji-Heung
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.518-521
    • /
    • 2005
  • Biodegradable polymers and hydrogels have been increasingly applied in a variety of biomedical applications including current drug delivery system and tissue engineering field. ${\alpha},\;{\beta}-Poly$(N-2-hydroxyethyl-DL-aspart-amide), PHEA. is one of poly(amino acids) with hydroxyethyl pendants, which is hewn to be biodegradable and potentially biocompatible. So that, the utilization and various chemical modifications of PHEA have been attempted for useful biomedical applications. In this wort chemical gels based on PHEA were prepared by crosslinking with diisocyanate compound in DMF in the presence of catalyst. Here, the PHEA was prepared from polysuccinimde, the thermal polycondensation product of aspartic acid, via ring-opening reaction with ethanolamine. The preparation of gels and their swelling behavior, depending on the different medium and pH, were investigated. Also the morphology by SEM and simple hydrolytic degradation were observed.

Preparation and Release Behavior of Methoxy poly(ethylene glycol)- poly(L-lactide-co-glycolide) Wafer Containing Albumin (알부민을 함유한 메톡시 폴리(에틸렌 글리콜)- 폴리(L-락타이드-co-글리콜라이드) 웨이퍼의 제조 및 방출거동)

  • 서광수;김문석;김경자;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.328-334
    • /
    • 2004
  • A series of methoxy poly(ethylene glycol) (MPEG)-poly(L-lactide-co-glycolide) (PLGA) diblock copolymers were synthesized by ring-opening polymerization of L-lactide and glycolide with carbitol (134 g/mole) or different molecular weights of MPEG (550, 2000, and 5000 g/mole) as an initiator in presence of Sn(Oct)$_2$. The properties of diblock copolymers were characterized by using $^1$H-NMR, GPC, and XRD. After uniform mixing of block copolymers and 1% albumin bovine-fluorescein isothiocyanate(FITC-BSA) with a freeze miller, the wafers loaded FITC-BSA were fabricated by using a mold with a dimensions of 3 mm${\times}$1mm diameter. The release profiles of FITC-BSA and the pH changes of wafer were examined using pH 7.4 PBS for 30 days at 37$^{\circ}C$. The release profiles of albumin showed fast initial burst as the molecular weights of MPEG increased. As a result of this study, the release behavior of BSA was controlled with introducing MPEG in the block copolymers.

Synthesis of Methoxy Poly(ethylene glycol)-b-poly($\varepsilon$-caprolactone) Diblock Copolymers and Release Behavior of Albumin for Implantable Protein Carriers (이식형 단백질 전달체로서 메톡시 폴리(에틸렌 글리콜)/폴리카프로락톤 블록 공중합체의 합성 및 알부민의 방출 거동)

  • 서광수;전세강;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.232-238
    • /
    • 2004
  • MPEG-PCL diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and $\varepsilon$-caprolactone (CL) as drug carriers were synthesized by ring-opening polymerization MPEG-PCL diblock copolymers were characterized by X-ray diffraction and differential scanning calorimetry. After freeze milling of block copolymers and albumin bovine-fluorescein isothiocyanate (FITC-BSA) as model protein, the wafers loaded FITC-BSA were fabricated by direct compression method. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 14 days at 37$^{\circ}C$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer. The morphological change of wafers was observed by digital camera and scanning electron microscope. The release rate and initial burst of BSA increased with increasing PEG molecular weights and decreasing PCL molecular weights in the segments of MPEG -PCL diblock copolymers.

Spectroscopic Studies on the Reaction between Amino Groups on Silica Nanoparticle Surface and Glycidyl Methacrylate (실리카 나노입자 표면에 결합된 아미노기와 Glycidyl Methacrylate의 반응에 관한 분광학적 연구)

  • Lee, Sangmi;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.777-783
    • /
    • 2013
  • We used dipodal type bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify silica nanoparticles to introduce secondary amino groups on the silica surface. These grafted N-H groups were reacted with glycidyl methacrylate (GMA) to introduce polymerizable methacrylate groups on the silica surface. After modification reaction, we used several analytical techniques such as Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state $^{13}C$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to analyze the effects of reaction time, reaction temperature and used GMA concentration on the modification degree between N-H groups on the silica surface and epoxide groups of GMA. We found increased introduction of methacrylate groups on the silica surface by ring opening reaction of epoxide groups of GMA with N-H groups on BTMA treated silica with increased reaction time, reaction temperature and used GMA concentration within our experimental conditions.

Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

  • Jung, Yang-Il;Park, Dong-Jun;Park, Jung-Hwan;Kim, Hyun-Gil;Yang, Jae-Ho;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.218-222
    • /
    • 2018
  • An oxide-dispersion-strengthened (ODS) layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide ($Y_2O_3$)-coated Zircaloy-4 tube to induce the penetration of $Y_2O_3$ particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at $380^{\circ}C$, and from 385 to 470 MPa at $500^{\circ}C$. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to $830^{\circ}C$ at a heating rate of $5^{\circ}C/s$ and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties.

Synthesis of [18F]-Labelled Nebivolol as a β1-Adrenergic Receptor Antagonist for PET Imaging Agent (베타1-아드레날린 수용체를 표적으로 하는 심근영상제로서 18F 표지된 nebivolol의 합성)

  • Kim, Taek-Soo;Park, Jeong Hoon;Lee, Jun Young;Yang, Seung Dae;Chang, Dong-Jo
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2016
  • Selective ${\beta}_1$-agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective ${\beta}_1$-antagonists including nebivolol have high binding affinity on ${\beta}_1$-adrenergic receptor, not ${\beta}_2$-receptor mainly expressed in smooth muscle. Nebivolol is one of most selective ${\beta}_1$-blockers in clinically used ${\beta}_1$-blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective ${\beta}_1$-blocker. Nebivolol is $C_2$-symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of $^{18}F$. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for $^{18}F$-aromatic substitution, was synthesized in moderate yield which was readily subjected to $^{18}F$-aromatic substitution to give $^{18}F$-labelled nebivolol.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Reducing Characteristics of Potassium Triethylborohydride

  • Yoon, Nung-Min;Yang H.S.;Hwang, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 1987
  • The approximate rates, stoichiometries and products of the reaction of potassium triethylborohydride $(KEt_3BH)$ with selected organic compounds containing representative functional groups under the standard condition $(0^{\circ}C,$ THF) were examined in order to explore the reducing characteristics of this reagent as a selective reducing agent. Primary alcohols, phenols and thiols evolve hydrogen rapidly whereas secondary and tertiary alcohols evolve very slowly. n-Hexylamine is inert to this reagent. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of noncamphor gives 3% exo- and 97% endo-norboneol. Anthraquinone is cleanly reduced to 9,10-dihydro-9,10-dihydroxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively but further reduction does not occur. Anhydrides utilize 2 equiv of hydride to give an equimolar mixture of acid and alcohol. Acid chlorides, esters and lactones are rapidly and quantitatively reduced to the corresponding alcohols. Epoxides are reduced at moderate rates with Markovnikov ring opening to give the more substituted alcohols. Primary amides liberate 1 equiv of hydrogen rapidly. Further reduction of caproamide is slow whereas benzamide is not reduced. Tertiary amides are reduced slowly. Benzonitrile utilizes 2 equiv of hydride in 3 h to go to the amine stage whereas capronitrile takes only 1 equiv. The reaction of nitro compounds undergo rapidly whereas azobenzene and azoxybenzene are reduced slowly. Cyclohexanone oxime rapidly evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine N-oxide and pyridine is reduced rapidly. Disulfides are rapidly reduced to the thiol stage whereas sulfoxide, sulfonic acid are practically inert to this reagent. Sulfones and cyclohexyl tosylate are slowly reduced. Octyl bromide is reduced rapidly but octyl chloride and cyclohexyl bromide are reduced slowly.