• Title/Summary/Keyword: Ring resonators

Search Result 80, Processing Time 0.023 seconds

THE COMPARING STUDY OF THE DIELECTRIC CHARACTERISTIC FROM THE LTCC MICROSTRIP RESONATOR ARCHITECTURES (LTCC MICROSTRIP RESONATOR 구조에 따른 유전특성 비교 연구)

  • Lee, Joong-Keun;Jung, Hyun-Chul;Yoo, Chan-Sei;Kim, Dong-Su;Yoo, Myung-Jae;Park, Sung-Dae;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.309-310
    • /
    • 2005
  • Generally, the dielectric constant and loss tangent are gotten by resonators. This paper presents analysis of the comparing the dielectric constant and loss tangent from the Ring, T and series gap structures. The T structure can be analyzed easily at wideband characteristic with simple design. the Ring can ignore the radiation loss from the open-ended effect. the Series gap can get more accurate permittivity than a Ring structure. The Used materials were dupont9599 LTCC ceramic and daeju0086 Ag.

  • PDF

Miniatured Planar Bandpass Filter Using Coupled Metamaterial Resonators

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.256-259
    • /
    • 2011
  • In this article, new microstrip slow-wave bandpass filters using open loop resonator loaded with inter-digital capacitive fingers is proposed. The filter features not only compact in size, but also exhibits spurious stop-band rejection. Filters of this type with elliptic function and Chebyshev response are demonstrated. There is good agreement between experimental and full-wave electromagnetic (EM) simulation results.

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.

Ultrathin Metamaterial for Polarization Independent Perfect Absorption and Band-pass Filter

  • Zhang, Xu;Gong, Zhijie
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.665-672
    • /
    • 2015
  • We demonstrate an ultrathin metamaterial for polarization independent perfect absorption as well as a band-pass filter (BPF) which works at a higher frequency band compared to the perfect absorption band. The planar metamaterial is comprised of three layers, symmetric split ring resonators (SSRRs) at the front and structured ground plane (SGP) at the back separated by a dielectric layer. The perfect metamaterial absorber (MA) can realize near 100% absorption due to high electromagnetic losses from the electric and/or magnetic resonances within a certain frequency band. The thickness of the structure is only 1/28 of the maximum absorption wavelength.

Hybrid-Integrated Tunable Laser Based on Small Double-Ring Resonator with Improved Side Mode Suppression Ratio (부 모드 억제율이 향상된 소형 이중 링 공진 반사기 기반 하이브리드 집적 파장 가변 레이저)

  • Kwon, Oh-Sang;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper, a small double ring resonator reflector was designed and fabricated using a polymer waveguide, and the measurement result was discussed. A widely tunable characteristic of the small double ring resonator caused by the Vernier effect, which results from the difference of the ring radii, was observed. The insertion loss of the double ring reflector was reduced by minimizing the device length to be as short as possible, and thus the output power and the SMSR (side mode suppression ratio) was greatly enhanced. The hybrid integrated laser based on the small double ring resonator reflector lased with the SMSR of 45 dB. In addition, the wide tuning range of 40 nm could be obtained by injecting a current of 30 mA to an electrode on top of the reflector.

A Comparative Study for the Microwave Surface Resistances of $YBa_2$$Cu_3$$O-{7-$\delta$}$ Films Measured with a Microstrip Resonator and a Inutile-loaded Cavity Resonator (마이크로스트립 공진기와 Rutile-loaded Cavity 공진기로 측정한 $YBa_2$$Cu_3$$O-{7-$\delta$}$박막의 마이크로파 표면저항 비교 연구)

  • O. K. Kwon;H. J. Kwon;Lee, J. H.;Jung Hur;Lee, Sang-Young
    • Progress in Superconductivity
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Temperature dependences of the unloaded Q(Q$_{0}$) and the resonant frequency ( $f_{0}$) of YB $a_2$C $u_3$ $O_{7-{\delta}}$ (YBCO) microstrip ring resonators and rutile-loaded cylindrical cavity resonators were measured at low temperatures. Dc magnetron-sputtered YBCO films grown on Ce $O_2$-buffered r-cut sapphire (CbS) substrates were used fur this purpose. The surface resistances ( $R_{s}$) of YBCO films measured by both a microstrip ring resonator and a TE $01\delta$/ mode rutile-loaded cylindrical cavity resonator are compared with each other. It turned out that the values of $R_{s}$ measured by the microstrip resonator technique are comparable to those by the rutile-loaded resonator technique at temperatures lower than ~50 K. However, above 50 K, the $R_{s}$ measured by the microstrip resonator technique appeared higher according to the temperature. Our results show that the current crowding effects near the edge of a microstrip resonator become more significant at temperatures near the critical temperature.emperature.e.e.e.e.e.e.

  • PDF

Integrated Photonic Channel Selective Microwave Bandpass Filter Incorporating a 1×2 Switch Based on Tunable Polymeric Ring Resonators (폴리머 링 공진기 기반의 스위치를 이용한 집적광학 채널 선택 마이크로웨이브 대역통과 필터)

  • Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.79-83
    • /
    • 2007
  • A reconfigurable photonic microwave (MW) channel selective filter was demonstrated incorporating a $1{\times}2$ switch based on two tunable polymeric resonators with different free spectral ranges. Each resonator, consisting of two cascaded rings with an electrode formed on one of them, plays a role as an on/off switch through the thermooptic effect. The optical signal carrying the MW signal is routed to either port of the switch and detected to show the filtered output at the frequency determined by the free spectral range of the corresponding resonator. When the channel centered at 10 GHz was chosen, the extinction ratio was ${\sim}30dB$, the bandwidth 1 GHz, and the electrical power consumption 4.1 mW. For the other channel located at 20 GHz, we have achieved the extinction ratio of ${\sim}30dB$, the bandwidth of 2 GHz, and the required power of 8.0 mW. Finally the crosstalk between the selected and blocked channels was higher than 24 dB.

Design of a Metamaterial Absorber for High Isolation of a WCDMA Indoor Repeater Antenna (WCDMA 댁내형 중계기 안테나의 격리도 개선을 위한 메타 구조 기반의 흡수체 설계)

  • Yoon, Na-Nae;Kim, Hyoung-Jun;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1058-1064
    • /
    • 2012
  • In this paper, an absorber based on metamaterial is proposed to improve the isolation of conventional WCDMA indoor repeater antenna. The proposed absorber is composed of Double Split Ring Resonators(DSRRs) and Complementary Spiral(CS) structure. The proposed absorber based on metamaterial is $9.6mm{\times}9.6mm{\times}1.2mm$ and absorption is about 94 % at 2.2875 GHz. The proposed antenna, which proposed absorber is applied to conventional WCDMA indoor repeater antenna, has isolation over 85 dB. Isolation is improved more than 10 dB compared with the conventional antenna. The VSWR is lower than 2 at WCDMA band from 1.92 GHz to 2.17 GHz. The radiation patterns are $60^{\circ}{\pm}10^{\circ}$ E-plane and H-plane, respectively. And, the gain is more than 6 dBi. The volume of proposed antenna with absorber based on metamaterial is $90mm{\times}90mm{\times}44.8mm$.

Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

  • Hwang, Sungyoun;Lee, Bomson;Kim, Dong Hwan;Park, Joon Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2018
  • In this paper, a method of designing a Vivaldi type phased array antenna (PAA) which operates at S-band (2.8-3.3 GHz) is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs) for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a $1{\times}8$ array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ${\pm}53^{\circ}$ based on a -10 dB active reflection coefficient. The operation of the scan angle is possible within ${\pm}60^{\circ}$ with a little larger reflection coefficient (-7 dB to -8 dB). The proposed design with BC-SRRs is expected to be useful for PAA applications.

Effects of Split Position on the Performance of a Compact Broadband Printed Dipole Antenna with Split-Ring Resonators

  • Kedze, Kam Eucharist;Wang, Heesu;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.115-121
    • /
    • 2019
  • This paper presents the effects of the position of the split of a split-ring resonator (SRR) on the performance of a composite broadband printed dipole antenna. The antenna is made of two printed dipole arms enclosed by two rectangular and identically printed SRRs. One dipole arm and the SRR are printed on the top side of the substrate, while the other dipole arm and SRR are printed on the bottom side of the same substrate. By changing the position of the split on the SRR, different antenna characteristic values are obtained, namely, for impedance bandwidth and radiation patterns. The split position is thus a critical parameter in antenna design, because it influences the antenna's major performance immensely. Different split positions and their consequences for antenna performance are demonstrated and discussed. The antenna generates linearly polarized radiations, and it is computationally characterized for broadband characteristics. The optimized compact antenna has overall dimensions of 9.6 mm × 74.4 mm × 0.508 mm (0.06λ × 0.469λ × 0.0032λ at 1.895 GHz) with a measured fractional bandwidth of 60.31% (1.32 to 2.46 GHz for |S11| <-10 dB) and a radiation efficiency of >88%.