Browse > Article
http://dx.doi.org/10.3807/JOSK.2015.19.6.665

Ultrathin Metamaterial for Polarization Independent Perfect Absorption and Band-pass Filter  

Zhang, Xu (School of Physics Science and Engineering, Tongji University)
Gong, Zhijie (School of Physics Science and Engineering, Tongji University)
Publication Information
Journal of the Optical Society of Korea / v.19, no.6, 2015 , pp. 665-672 More about this Journal
Abstract
We demonstrate an ultrathin metamaterial for polarization independent perfect absorption as well as a band-pass filter (BPF) which works at a higher frequency band compared to the perfect absorption band. The planar metamaterial is comprised of three layers, symmetric split ring resonators (SSRRs) at the front and structured ground plane (SGP) at the back separated by a dielectric layer. The perfect metamaterial absorber (MA) can realize near 100% absorption due to high electromagnetic losses from the electric and/or magnetic resonances within a certain frequency band. The thickness of the structure is only 1/28 of the maximum absorption wavelength.
Keywords
Perfect metamaterial absorber; Band-pass filter; Frequency selective surface; Symmetric split ring resonator;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).   DOI
2 D. Zarifi, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagn. Res. 123, 337-354 (2012).   DOI
3 J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, “Multi-band metamaterial absorber based on the arrangement of donuttype resonators,” Opt. Express 21, 9691-9702 (2013).   DOI
4 B. R. Bian, S. B. Liu, S. Y. Wang, X. K. Kong, H. F. Zhang, B. Ma, and H. Yang, “Novel triple-band polarizationinsensitive wide-angle ultra-thin microwave metamaterial absorber,” J. Appl. Phys. 114, 194511 (2013).   DOI
5 X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).   DOI
6 X. P. Shen, T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401-9407 (2011).   DOI
7 H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).   DOI
8 Y. J. Yoo, Y. J. Kim, J. S. Hwang, J. Y. Rhee, K. W. Kim, Y. H. Kim, H. Cheong, L. Y. Chen, and Y. P. Lee, “Triple-band perfect metamaterial absorption, based on single cut-wire bar,” Appl. Phys. Lett. 106, 071105 (2015).   DOI
9 P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102, 081122 (2013).   DOI
10 C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, and E. Demirel, “Perfect metamaterial absorber with polarization and incident angle independencies based on ring and crosswire resonators for shielding and a sensor application,” Opt. Commun. 322, 137-142 (2014).   DOI
11 Y. J. Huang, G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, “Wide-angle and polarization independent metamaterial absorber based on snowflake-shaped configuration,” J. Electromagnetic Waves and Applications 27, 552-559 (2013).   DOI
12 K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).   DOI
13 D. T. Viet, N. T. Hien, P. V. Tuong, N. Q Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: Peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209-213 (2014).   DOI
14 N. V. Dung, P. V. Tuong, Y. J. Yoo, Y. J. Kim, B. S. Tung, V. D. Lam, J. Y. Rhee, K. W. Kim, Y. H. Kim, L. Y. Chen, and Y. P. Lee, “Perfect and broad absorption by the active control of electric resonance in metamaterial,” J. Opt. 17, 045105 (2015).   DOI
15 J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagnetic Waves and Applications 28, 1541-1580 (2014).   DOI
16 J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105, 081102 (2014).   DOI
17 F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).   DOI
18 Y. X. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. L. He, and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett. 99, 253101 (2011).   DOI
19 P. V. Tuong, J. W. Park, V. D. Lam, W. H. Jang, S. A. Nikitov, and Y. P. Lee, “Dielectric and Ohmic losses in perfectly absorbing metamaterials,” Opt. Commun. 295, 17-20 (2013).   DOI
20 V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, “Electromagnetic behavior of representative metamaterial structures,” J. Korean Phys. Soc. 53, 558-563 (2008).   DOI
21 B. A. Munk, Frequency Selective Surfaces Theory and Design (John Wiley & Sons, New York, USA, 2000).
22 Y. J. Yoo, H. Y. Zheng, Y. J. Kim, J. Y. Rhee, J.-H. Kang, K. W. Kim, H. Cheong, Y. H. Kim, and Y. P. Lee, “Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell,” Appl. Phys. Lett. 105, 041902 (2014).   DOI
23 H. Yuan, B. O. Zhu, and Y. Feng, “A frequency and bandwidth tunable metamaterial absorber in x-band,” J. Appl. Phys. 117, 173103 (2015).   DOI
24 Y. J. Yoo, Y. J. Kim, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, Y. H. Kim, H. Cheong, and Y. P. Lee, “Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances,” Opt. Express 21, 32484-32490 (2013).   DOI
25 B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97, 051906 (2010).   DOI
26 F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, and C. Sabah, “Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips,” J. Electromagnetic Waves and Applications 28, 741-751 (2014).   DOI
27 B. Zhou, H. Li, X. Y. Zou, and T. J. Cui, “Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials,” Prog. Electromagn. Res. 120, 235-247 (2011).   DOI
28 R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).   DOI
29 V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp. 10, 509-514 (1968).   DOI
30 Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945-947 (2011).   DOI
31 N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).   DOI
32 C. M. Lee, W. S. Shim, Y. Moon, and C. H. Seo, “Design of ultra-wide band-pass filter based on metamaterials applicable to microwave photonics,” J. Opt. Soc. Korea 16, 288-291 (2012).   DOI
33 Y. Xie, J. Jiang, and S. He, “Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration,” Prog. Electromagn. Res. 124, 151-162 (2012).   DOI
34 J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000).   DOI