• Title/Summary/Keyword: Rigid-plastic Workhardening

Search Result 4, Processing Time 0.019 seconds

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.

Rigid-Plastic Explicit Finite Element Formulation for Two-Dimensional Analysis of Sheet Metal Forming Processes (2차원 박판성형공정 해석을 위한 강소성 외연적 유한요소 수식화)

  • An, Dong-Gyu;Jeong, Dong-Won;Jeong, Wan-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.88-99
    • /
    • 1996
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modeling of material requiring large computataion time. In the present work, a basic formulation for rigid-plastic explicit finite element analysis of plain strain sheet metal forming problems has been proposed. The effect of some basic parameters involved in the dynamic analysis has been studied in detail. Thus, the effective ranges of parameters have been proposed for numerical simultion by the rigid-plastic explicit finite element method. A direct trial-and-error method is introduced to treat contact and friction. In computation, sheet material is assumed to possess normal anisotropy and rigid-plastic workhardening characteristics. In order to show the validity and effectiveness of the proposed explicit scheme, computations are carried out for cylindrical punch stretching and the computational results are compared with those by the implicit scheme as well as with a commercial code. The proposed rigid-plastic exlicit finite element method can be used as a robust and efficient computational method for analysis of sheet metal forming.

Rigid-Plastic Finite Element Analysis of Axi-Symmetric Hydroforming with Controlled Pressure (유체압력이 제어되는 축대칭 하이드로포밍에 대한 강소성 유한요소 해석)

  • 양동열;권혁주;정완진;노태성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.571-580
    • /
    • 1990
  • The study is concerned with the analysis of axisymmetric hydroforming with controlled pressure by the rigid-plastic finite element method. The finite element method is employed to obtain the detailed information including the distribution of stresses and strains and geometry changes. Experiments are carried out for hydroforming of cold-rolled steel sheets with the developed CNC hydroforming press which is pressure-controlled according to the fluid pressure vs.-stroke relationship given by the upper bound. Four types of punches are used for the experiments. The computed results are in good agreements with the experimental observation in geometric change and thickness variation. The present analysis permits the prediction of stresses, strains, geometric changes. The effects of Lankford value and workhardening exponent on thickness strains in hydroforming are also discussed. It is thus shown that the present method can be applied to the effective design of axisymmetric hydrooforming processes.

An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method(II) - Application to High Speed Rolling - (엑스플리시트 시간 적분 유한 요소법을 이용한 고속 성형 해석(II) - 고속 압연 해석)

  • 유요한;정동택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1551-1562
    • /
    • 1991
  • 최근까지 발표된 유한 요소법을 이용한 압연 해석 관련 주요 논문들을 정리해 보면 다음과 같다. Li와 Kobayashil는 강소성 유한 요소법(rigidplastic finite element method)을 여러가지 마찰조건에 대하여 해석하였다. 이때 압연롤은 강체 (rigid body)로 시편은 가공경화(workhardening)를 동반한 강소성체로 모델링하였다. Hwang과 Kobayashi는 강소성 유한 요소법을 이용한 평면 변형 압연에서 재료 손실을 최소화하는 예비 성형체(preform)의 설계에 대한 연구를 수행하였다. 이 경우에도 역시 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체와 완전 소성체로 모델링 되었으나, 고착(sticking) 마찰 조건에 대해서만 해석을 수행하였다. Mori와 Osak- ada 그리고 Oda는 약간 압축성이 있는 재료의 평면 변형 압연에 대하여 연구하였다. 이때 압연롤은 강체로 시편은 가공 경화를 동반한 강소성체로 모델링 되었으며 경계 면에서는 Coulomb 마찰을 고려하였다. 이밖에도 오일러(Eulerian) 수식화를 이용한 Dawson과 Thompson, Berman의 해석 결과가 있으며, 또 폭 방향의 변형까지를 고려한 Li와 Kobayashi, Mori와 Osakada의 3차원 해석 결과가 있다.