• Title/Summary/Keyword: Rigid-Viscoplastic

Search Result 70, Processing Time 0.027 seconds

Process Design in Superplastic Forging of a Jet Engine Disk by the Finite Element Method (유한요소법을 이용한 제트엔진 디스크의 초소성 단조공정설계)

  • 이진희;강범수;김왕도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.876-886
    • /
    • 1994
  • Process design in superplastic forming to produce a Nickel-base jet engine disk has been carried out using the rigid-viscoplastic finite element method. This study aims at deriving systematic procedures in forging of superalloy engine disk, and develops a simple scheme to control strainrate within a range of superplastic deformation during the forging operation. The new process, a pancake type preform being used, is designed to have less manufacturing time, and more even distribution of effective strain in the final product, while the conventional superplastic forging of an engine disk has been produced from a cylindrical billet. The jet engine company, Pratt & Whitney, provided the basic information on the manufacturing process of superplastic forging of a jet engine disk.

Analysis of Superplastic Forming Process Design Using a Combined Stretch/Blow Process for Uniform Thickness Distribution (균일한 두께분포를 위한 신장/블로 공정을 이용한 초소성 성형 공정설계 해석)

  • Hong, S.S.;Lee, J.S.;Kin, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.129-137
    • /
    • 1994
  • A rigid-viscoplastic finite element method has been used for modeling superplastic stretch/blow process design to improve thickness distribution. Punch velocity-time relationship of the stretch forming and pressure-time cycle of the blow forming for a given strain rate are calculated. A superplastic material is assumed to be isotropic and a plane-strain line element based on membrane approximation is employed for the formulation. The effects of the width, corner radius and height of the punch during stretch forming are examined for the final thickness distribution, and the process design to improve thickness distribution can be established.

  • PDF

Finite Element Analysis of Axisymmetric Sheet Hydroforming Processes (축대칭 박판 액압성형 공정의 유한요소 해석)

  • Jeong, Y. H.;Lee, S. H.;Keum, Y. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.26-29
    • /
    • 1999
  • The sectional forming analysis program for analyzing the hydroforming processes of axisymmetric sheet parts was tleveloped. The rigid-viscoplastic FEM formulation based on membrane theory was derived, wh~cta simi~ltaneously solve force equilibrium as well as non-penetration condition. Hill's non-quadratic normal anisotropic yield theory(1979) was used for material behaviour. For describing the liquid pressure iaction, the flexible tool concept was introduced. Isotropic hardening law was also assumed. To verify the \,alidity of the formulation, the stepped cup forming process as well as the hydrostatic bulging test were \imnlated. Simulation results agreed well with Finckenstein and experimental ones.

  • PDF

Roll Groover Design and Roll Speed Set-up in Bar Rolling Process Design using Rigid-thermo-viscoplastic FEM (강열점소성 유한요소법을 적용한 봉형상압연 공정설계에서의 공형 설계 및 롤속도 설정)

  • 권혁철;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.88-97
    • /
    • 1999
  • In this study, a systematic approach for roll pass design in bar rolling was studied. To minimize the trial and errors in the process design, a roll CAD system and a FE analysis system were combined. Based on the system, a methodology for roll pass design by FEM was studied. At first, designed process was compared with the FE analysis results and process redesign based on the FEM results was performed to obtain the specified final geometry. Then, empirical formula for roll speed set-up was compared with the FE analysis results. Further study on various simulations for bar rolling will help in making up for the inaccuracy in the currently used empirical roll speed rules. In addition, verification of the accuracy of the FE analysis system must be performed using experimental data in the industry.

  • PDF

Process Optimal Design in Steady-State Meta Forming considering Strain-Hardening (변형률 경화를 고려한 정상상태 소성가공 공정의 공정 최적설계)

  • 황숭무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.40-43
    • /
    • 2000
  • A process optimal design methodology applicable to steady-state forming with a strain-hardening material is presented. in this approach the optimal design problem is formulated on the basis of a rigid-viscoplastic finite element process model and a derivative based approach is adopted as an optimization technique The process model the schemes for the evaluation of the design sensitivity considering the effect of strain-hardening and an iterative procedure for design optimization are described. the validity of the proposed approach is demonstrated through application to die shape optimal design in extrusion.

  • PDF

A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of square die extrusion based on ALE description (강-점소성 ALE 유한요소 수식화에 근거한 3차원 평금형 형재 압출의 해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.150-156
    • /
    • 1995
  • In the finite element analysis of metal forming processes, the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. However some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work, a ALE(arbitrary Lagrangian-Eulerian) finite element formulation for deformation analysis are presented for rigid viscoplastic materials. The developed finite element program is applied to the analysis of square die extrusion of a square section. The computational results are compared with those from the updated Lagrangian finite element analysis.

  • PDF

A Cooling Roll Design and Prediction of Initial Conditions for Direct Rolling Process of Molten Metal (용탕직접압연공정의 초기조건예측 및 냉각로울 설계)

  • 강충길;김영도
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.233-244
    • /
    • 1995
  • Rolling force in the direct rolling(or twin-roll strip continuous casting) process fo semi-solid material has been computed using rigid-viscoplastic finite element method. Temperature distributions for calculations of rolling force and roll deformation are obtained from thermofluid analysis. Three dimensional roll deformation analysis has also been performed by using commercial package ANSYS. From the results, behavior of metal flow, rolling force and roll deformation have been investigated according to the process conditions of semi-solid direct rolling.

  • PDF

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

Sectional Forming Analysis of Stamping Processes for Luminum Alloy Sheet metals (알루미늄 합금 박판 스탬핑 공정의 단면 성형 해석)

  • 이광병;이승열;금영탁
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 1997
  • The sectional forming analysis of stamping pocesses for aluminum alloy sheet metals was investigated. For the modeling of the anomalous behavior of aluminum alloy sheet. the Barlat's strain rate potential and Hill's 1990 non-quadratic yield theory with an isotropic hardening rule were employed. The rigid-viscoplastic FEM formulation which solves equilibrium equation for plane-strain stage with mesh-normal geometric constraints was derived. A new method to determine the Barlat's anisotropic coefficients was also suggested. To verify the validity of the formulation, the stretch and draw forming processes of a square cup were simulated.

  • PDF

Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions (임의의 성형조건을 갖는 박판의 평면변형율 해석)

  • Keum, Y.T.;Lee, S.Y.;Wagoner, R.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF