• Title/Summary/Keyword: Rigid plate

Search Result 281, Processing Time 0.03 seconds

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

Attenuation of quasi-Lamb waves in a hydroelastic system "elastic plate+compressible viscous fluid+rigid wall"

  • Akbarov, Surkay D.;Negin, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.443-459
    • /
    • 2022
  • The paper studies the dispersion and attenuation of propagating waves in the "plate+compressible viscous fluid layer" system in the case where the fluid layer flow is restricted with a rigid wall, and in the case where the fluid layer has a free face. The motion of the plate is described by the exact equations of elastodynamics and the flow of the fluid by the linearized Navier-Stokes equations for compressible barotropic Newtonian viscous fluids. Analytical expressions are obtained for the amplitudes of the sought values, and the dispersion equation is derived using the corresponding boundary and compatibility conditions. To find the complex roots of the dispersion equation, an algorithm based on equating the modulus of the dispersion determinant to zero is developed. Numerical results on the dispersion and attenuation curves for various pairs of plate and fluid materials under different fluid layer face conditions are presented and discussed. Corresponding conclusions on the influence of the problem parameters on the dispersion and attenuation curves are made and, in particular, it is established that the change of the free face boundary condition with the impermeability condition can influence the dispersion and attenuation curves not only in the quantitative, but also in the qualitative sense.

Rigid Fixation using Bioabsorbable Mesh and Screws in Facial Bone Fracture (흡수성 망상판과 나사를 이용한 안면골절의 견고정법)

  • Shin, Dong-Hyeok;Kim, Deok-Jung;Kim, Soo-Young;Hwang, Eun-A;Choi, Hyun-Gon;Kim, Soon-Heum;Uhm, Ki-Il
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.717-720
    • /
    • 2010
  • Purpose: Absorbable plate and screw fixation is widely used technique for internal rigid fixation in craniomaxillofacial surgery. However, there are some potential problems associated with the use of plate. The purpose of this study is to evaluate the feasibility of bone fixation in facial fracture using absorbable mesh in place of absorbable plate. Methods: The records of 55 patients with zygomaticomaxilla fractures treated by open reduction, performed by the author from February 2008 to May 2009, were retrospectively reviewed. Patients were selected to receive absorbable mesh fixation. The incidence of all complications including infection, hypoesthesia, and deformity was examined. Analysis with postoperative computed tomography follow-up demonstrates degree of reduction. Results: Forty-six patients met criteria for inclusion in the study. All patients went on to satisfactory healing without complication. Postoperative computed tomography revealed good bony alignment similarly non affected side. Conclusion: This study demonstrates that the rigid internal fixation of fractured bone fragments using absorbable mesh is more effective than absorbable plate, especially in comminuted fracture of maxilla.

Evaluation of The Moment Resistance of Reinforced Wooden Gusset to Glulam Joint (보강목질적층판이 사용된 집성재 접합부의 모멘트 저항성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • In this study, specimens were produced with a column member and a wooden gusset only by inserting an wooden gusset which is a substitute for steel plate into the center of a slit-processed column member. The moment resistance performance of the specimens was compared with that of control specimens that used a steel plate. The measured maximum moments of the specimens produced with GFRP-reinforced wooden laminated gussets and pins were lower by 24% on average compared to the steel plate-inserted specimens, but they showed good toughness. The fracture shape suggests that it was fractured along the annual rings between the pin and the end of the column member. The rigid specimen that integrated a laminated wood and a wooden laminated gusset with adhesive showed 2.8 times greater initial rigidity and 40% greater maximum moment on average compared to the control specimen. The rigid specimens mainly fractured on a glulam around glue line.

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load (강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구)

  • Shin, JungHun;Jung, DongSoo;Kim, KyungWoong
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

Development of Vibration Analysis Software, PFADS-R3 using Power Flow Analysis (파워흐름해석법을 이용한 진동해석 소프트웨어, PFADS-R3 개발)

  • 홍석윤;서성훈;박영호;길현권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.824-830
    • /
    • 2003
  • The Power Flow Finite Element Method(PFFEM) offers very promising results in predicting the vibration responses of system structures, and the first PFFEM software, PFADS has been developed in Seoul National University for the vibration predictions and analysis of coupled system structures in medium-to-high frequency ranges. PFFEM is numerical method which solves energy governing equation using finite element technique for complicated structures where the exact solutions are not available. Through the upgrades, the current version PFADS R3 could cover the general beam and plate structures including various kinds of beam-plate rigid joints, spring-damper connection and rigid body connection within beam and plate in addition. This software is composed of three parts; translator, model converter and solver. The translator makes its own FE-model from bulk data of commercial FE software, and the model converter is used to convert FE-model to PFFE-model automatically. The solver calculates vibrational energy density and intensity for PFFE-model by solving global matrix equations of PFFEM. For the applications of PFADS R3, two vehicle models and a container model are examined with respect to major parameters, and reliable results are obtained.

  • PDF

Ankle Arthrodesis Using an Anterior T Plate in treating the Charcot joint of Ankle in a diabetic patient - A Case Report - (당뇨환자의 불안정 족관절에 있어서의 전방 T자형 금속판을 이용한 족관절 고정술)

  • Hwang, Kuhn-Sung;Sung, Il-Hoon;Cho, Soo-Hyun
    • Journal of Korean Foot and Ankle Society
    • /
    • v.5 no.1
    • /
    • pp.23-27
    • /
    • 2001
  • It has been known that the ankle arthrodesis is a common surgical procedure for treating the ankle arthrosis and deformity that do not respond to the non-operative treatment. To date, various surgical techniques for the ankle arthrodesis have been reported. Clinical and biomechanical trials have shown that the rigid internal fixation leads the increased rate of the union. The ankle arthrodesis may be complicated with the nonunion, delayed union, malunion, and infection. In cases of the Charcot joint of the ankle in diabetic patients, however, arthrodesis could reduce the disadvantage of the nonoperative treatment, such as the loss of the reduction, progressive collapse, multiple ulcerations and infection. The object of this case report is to report our experience of a successful ankle arthrodesis using an anterior T plate in treating the unstable ankle of a diabetic patient, associated with the ankle fracture and the neuropathy. The surgical approach of this technique is simple so that it would allow less soft tissue injury, and this procedure would be regarded as one alternative to provide the rigid internal fixation in the ankle arthrodesis.

  • PDF

On the dispersion of waves propagating in "plate+fluid layer" systems

  • Akbarov, Surkay D.;Negin, Masoud
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.123-142
    • /
    • 2021
  • The paper deals with the study of the dispersion of quasi-Lamb waves in a hydro-elastic system consisting of an elastic plate, barotropic compressible inviscid fluid, and rigid wall. The motion of the plate is described using the exact equations of elastodynamics, however, the flow of the fluid using the linearized equations and relations of the Navier-Stokes equations. The corresponding dispersion equation is obtained and this equation is solved numerically, as a result of which the corresponding dispersion curves are constructed. The main attention is focused on the effect of the presence of the fluid and the effect of the fluid layer thickness (i.e., the fluid depth) on the dispersion curves. The influence of the problem parameters on the dispersion curves related to the quasi-Scholte wave is also considered. As a result of the analyses of the numerical results, concrete conclusions are made about the influence of the fluid depth, the rigid wall restriction on the fluid motion, and the material properties of the constituents on the dispersion curves. During the analyses, the zeroth and the first four modes of the propagating waves are considered.

Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides (양면에서 부분적으로 유체와 접하는 사각평판의 고유진동)

  • Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Kim, Tae-Wan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.42-47
    • /
    • 2007
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh.Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the water bounded by rigid walls is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid.coupled natural frequencies comparing with the finite element analysis result.

  • PDF