• Title/Summary/Keyword: Rigid perfect plasticity

Search Result 8, Processing Time 0.018 seconds

Evaluation of Moment Resistance of Rigid Frame with Glued Joint (강절형 목질접합부의 모멘트저항성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • In this study, specimens of rigid frame joint were produced by integrating joints with adhesive and other specimens were produced by inserting a wooden gusset integrated with a column member into a slit-processed beam member and joining them with pins. Then the moment resistance performances of the specimens were examined. For the wooden gusset, a GFRP-reinforced wooden gusset was used. The calculation results of perfect elasto-plasticity for the frame specimens for which a GFRP-reinforced wooden gusset was inserted into and joined with the slit-processed beam member by pins were 20-80% lower compared to the control group which consisted of steel plate-inserted frame specimens. The rigid frame specimens for which the column and beam members have been integrated with adhesive showed almost no initial residual transformations, as well as 38% greater initial rigidity and 41% greater plasticity compared to the steel plate-inserted joint.

Kinematics of the Nonsteady Axi-symmetric Ideal Plastic Flow Process

  • Alexandrov, S.;Lee, W.;Chung, K.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.209-212
    • /
    • 2004
  • A nonsteady axi-symmetric ideal flow solution is obtained here. It is based on the rigid perfect-plastic constitutive law with the Tresca yield condition and its associated flow rule. The process is to deform a circular solid disk into a spherical shell of prescribed geometry. It is assumed that there are no rigid zones and friction stresses. The solution obtained provides the distribution of kinematic variables and involves one undetermined function of the time. This function can be in general found by superimposing an optimality criterion.

Evaluation of The Lateral Strength Performance of Rigid Wooden Portal Frame (강절형 목질 문형라멘프레임의 수평내력성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.535-543
    • /
    • 2017
  • For column-beam gussets of wooden structures, slit-processed members inserted with a steel plate are used in general. In this study, a rigid portal frame bonded with a joint was fabricated and a semi-rigid portal frame was fabricated by making a wooden gusset, a replacement for steel plate, of which a half was integrated into the column member and the other half was joined with the beam member by drift-pins. The lateral strength performance of the wooden portal frame was compared with that of the steel plate-inserted joint portal frame. The lateral strength performance was evaluated through a perfect elasto-plasticity model analysis, sectional stiffness change rate, and short-term permissible shear strength. As a result of the experiment, the maximum strength of the rigid portal frame was lower than that of the steel plate-inserted joint portal frame. The yield strength and ultimate strength were calculated as 0.58 and 0.48, respectively, but the measurements of initial stiffness and cumulative ductility improved by 1.35 and 1.1, respectively. As a result of the perfect elasto-plasticity model analysis of the semi-rigid portal frame, the maximum strength was lower than that of the rigid portal frame, but the toughness after failure was excellent. Thus, the ultimate strength was higher by 1.05~1.07. The steel plate-inserted portal frame showed rapid decrease in stiffness with the progress of repeated tests, but the stiffness of the portal frames with a wooden joint decreased slowly.

Nonsteady Plane-strain ideal forming with elastic dead zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Richmond Owen
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.190-193
    • /
    • 2004
  • Ever since the ideal forming theory has been developed fur process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, for a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

  • PDF

Nonsteady Plane-strain Ideal Forming with Elastic Dead Zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Alexandrov S.;Kang T.J.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.540-545
    • /
    • 2004
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone

  • Chung, Kwansoo;Lee, Wonoh;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.120-127
    • /
    • 2002
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform fellowing the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

Effect of thermal gradients on stress/strain distributions in a thin circular symmetric plate

  • Aleksandrova, Nelli N.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.627-639
    • /
    • 2016
  • The analysis of thermally induced stresses in engineering structures is a very important and necessary task with respect to design and modeling of pressurized containers, heat exchangers, aircrafts segments, etc. to prevent them from failure and improve working conditions. So, the purpose of this study is to investigate elasto-plastic thermal stresses and deformations in a thin annular plate embedded into rigid container. To this end, analytical research devoted to mathematically and physically rigorous stress/strain analysis is performed. In order to evaluate the effect of logarithmic thermal gradients, commonly applied to structures which incorporate thin plate geometries, different thermal parameters such as temperature mismatch and varying constraint temperature were introduced into the model of elastic perfectly-plastic annular plate obeying the von Mises yield criterion with its associated flow rule. The results obtained may be used in sensitive to temperature differences aircraft structures where the thermal effects on equipment must be kept in mind.

Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses (축응력 및 횡보강근을 고려한 콘크리트의 전단마찰내력 평가모델)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2016
  • Shear friction strength model of concrete was proposed to explain the direct friction mechanism at the concrete interfaces intersecting two structural elements. The model was derived from a mechanism analysis based on the upper-bound theorem of concrete plasticity considering the effect of transverse reinforcement and applied axial loads on the shear strength at concrete interfaces. Concrete was modelled as a rigid-perfectly plastic material obeying modified Coulomb failure criteria. To allow the influence of concrete type and maximum aggregate size on the effectiveness strength of concrete, the stress-strain models proposed by Yang et al. and Hordijk were employed in compression and tension, respectively. From the conversion of these stress-strain models into rigidly perfect materials, the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction were then mathematically generalized. The proposed shear friction strength model was compared with 91 push-off specimens compiled from the available literature. Unlike the existing equations or code equations, the proposed model possessed an application of diversity against various parameters. As a result, the mean and standard deviation of the ratios between experiments and predictions using the present model are 0.95 and 0.15, respectively, indicating a better accuracy and less variation than the other equations, regardless of concrete type, the amount of transverse reinforcement, and the magnitude of applied axial stresses.